Floating Wind for the Petroleum Industry

Jon Barratt Nysæther, Business Development Manager
Science Meets Industry
Bergen, October 25 2022
Mission:
Accelerating Floating Offshore Wind
Odfjell Drilling – from pioneers in MODUs to pioneers in MOWUs

Bergen Rig

Deepsea Driller

Deepsea Bergen

Deepsea Atlantic

Deepsea Semi™
From electrifying oil and gas installations to permanent floating wind parks

Short term

Exploit near term opportunity of O&G decarbonisation

Relevant services:
Rental MOWUs incl. op’s & maintenance

Longer term

A perfect partner for floating wind farm developers

Relevant services:
FOWU design, (supply chain), op’s & maint.
Electrifying “off grid” oil and gas installations with offshore wind

The WindGrid™ hybrid power module

- Uninterrupted power supply from wind power to oil and gas installations
- A combination of hybrid technologies
- Key to increase emission cuts from 35% to up to 70%

Science meets Industry, Oct 25, 2022
MOWU technologies

Tower and turbine from Siemens Gamesa:
15 MW (from 2026)

Access from CTV, OSV or helicopter (optional)

Integrated power module (optional)
- WindGrid™ (off grid oil&gas)

Deepsea Semi™ harsh environment, moored, steel semisubmersible

Note: Deepsea Semi™ hull shape for illustration only
Multi-locational, standardised design

The MOWU can be deployed in the harshest of environments

► Environmental design
 ► Designed for harsh environments
 ► Class covering the North-, Norwegian and Barents Seas
 ► Multi-locational – can be redeployed to new locations

► Mooring
 ► 3 or 6 point mooring system depending on application
 ► Combination of chains and fibre rope
 ► Generic mooring designs completed for water depths 60 – 1100+ meter
 ► Drag embedment or suction anchors

Figure 4: Map of 50-year RVE of significant wave height (Hs). Corresponding peak period (Tp). [5]
Deepsea Semi™ Hull Design – Historical timeline

<table>
<thead>
<tr>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ MoUs</td>
<td>✓ MoUs</td>
</tr>
<tr>
<td>Siemens Energy & Siemens Gamesa</td>
<td>Siemens Energy & Siemens Gamesa</td>
</tr>
<tr>
<td>✓ Concept Select + Initial Tank test</td>
<td>✓ Concept Select + Initial Tank test</td>
</tr>
<tr>
<td>✓ 3rd Party Feasibility Verification (DNV)</td>
<td>✓ 3rd Party Feasibility Verification (DNV)</td>
</tr>
<tr>
<td>✓ Design Brief</td>
<td>✓ Design Brief</td>
</tr>
<tr>
<td>✓ Tank test</td>
<td>✓ Tank test</td>
</tr>
<tr>
<td>✓ AiP by DNV</td>
<td>✓ AiP by DNV</td>
</tr>
<tr>
<td>✓ ILA by Siemens Gamesa</td>
<td>✓ ILA by Siemens Gamesa</td>
</tr>
<tr>
<td>✓ MSA by DNV</td>
<td>✓ MSA by DNV</td>
</tr>
</tbody>
</table>

- **AiP**: Approval in principle
- **ILA**: Integrated load analysis
- **MSA**: Main Scantling Approval

Science meets Industry, Oct 25, 2022
The WindGrid™ Module

Highlights

- Function: seamless integration with gas turbine generators in offgrid mode
- The Power Module secures power distribution, grid stability and energy storage
- Main components:
 - Battery modules (energy storage)
 - Converters (energy control to/from batteries)
 - Transformers (secure correct voltage level)
 - Switchgear (power distribution)
- The Power Module is developed in cooperation with Siemens Energy
- The functionality of the system has been verified by independent third party (DNV)
- Design status: mature, ready for detail engineering
Floating Offshore Wind for the Petroleum Industry
Science Meets Industry
Oct 25, 2025

Jon Barratt Nysæther