

A controlled-motion lidar experiment: Comparison of measurements by fixed and moving lidar wind profilers

S. Malekmohammadi¹, C. Duscha¹, F. Kelberlau², V. Neshaug², J. Reuder¹

¹ Geophysical Institute and Bergen Offshore Wind Centre, University of Bergen

² Fugro Norway AS

Train2Wind – A Marie Curie Network on Offshore Wind, EU no. 861291

Outline

Introduction

- ✓ An economic approach for wind measurement in offshore wind farm is using Floating lidars
- The movement of the ship or floating buoy induces error on measured wind
- Error induced my motion should be compensated
- Reference data for validating motion compensation is sparse
- Comparing with Met-Masts installed offshore, it would be hard to distinguish between motion induced error and general lidar error due to larger spatial separation in lidars
- Comprehending isolated error induced by motion on lidar measurements (by conducting controlled experiments) is required

Research Question to be addressed:

 What is the error induced by motion on lidar measurements and how to evaluate it?

Methodology

Experimental setup

- ✓ Experiment conducted in Grimstad, Norway from 16th to 26th August 2011
- Two lidar systems (ZephIR 300 and WindCube V1) exposed to controlled motions on a hexapod platform
- ✓ Two fixed reference lidars located at 5 m from the platform
- Wind speed was measured at approximately 80m above the surface

Reference Lidars

Test cases in the Experiment

- ✓ 54 different test cases were conducted: motions along the principal axis (roll, pitch, yaw, heave and surge) in addition to the combined motions
- Test case number 11 with the most consistent data and large amplitude was chosen for this study
- ✓ Sinusoidal motion in one single degree of freedom with constant amplitude and frequency

Motion Compensation

Compensation of each line-of-sight measurement for:

✓ Translatory Motion

Subtracting relative velocity component from radial velocities that changed by rigid body motion of lidar window

✓ Rotational Motion:

Compensation by matrix operation due to the changing scanning geometry

... using time-synchronized synthetic motion data.

Details in: Kelberlau et al. (2020)

Results

Comparison of the Reference Lidars test-011

EERA DeepWind Conference, 19-21 Jan 2022

Horizontal wind speed statistics for reference lidars

Motion Compensation Evaluation for moving lidars

15-minute example time slice (uncorrected vs corrected)

12

Horizontal wind speed improvement

Horizontal wind speed improvement

WindCube

ZephIR

7

7

8

8

EERA DeepWind Conference, 19-21 Jan 2022

Horizontal wind speed improvement

No motion

With motion

EERA DeepWind Conference, 19-21 Jan 2022

Error Reduction by Motion Compensation

Horizontal wind speed	
WindCube:	85.1 %
ZephIR:	82.5 %

Conclusion

- The impact of pitch motion with the frequency of 0.2 Hz on estimates of the horizontal wind speed is larger for the WindCube than for the ZephIR
- ✓ The WindCube shows larger random error before and after motion compensation
- ✓ The applied motion compensation is effective for both lidars
- ✓ The error was reduced by 85% and 82% after motion compensation for WindCube and ZephIR respectively

Reference:

1. Kelberlau, F.; Neshaug, V.; Lønseth, L.; Bracchi, T.; Mann, J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sens. 2020, 12, 898. https://doi.org/10.3390/rs12050898

Next Steps

- ✓ Improve experiment setup
- \checkmark More realistic motion
- ✓ Have longer measurements over different wind conditions
- Two reference Lidars to isolate the random error
- ✓ Conduct the experiment in a more representative site

Acknowledgment:

Train2Wind – A Marie Curie Network on Offshore Wind, EU no. 861291

