Newborn screening (DCP4 ID: MNH08)

FairChoices

DCP Analytic Tool

Universal newborn screening and management of congenital endocrine or metabolic disorders

Authors: Kaur G, Ahmed S, Watkins D, Coates MM, Økland JM,

Haaland ØA, Johansson KA

Date: 2.11.2021

Date updated: 2.12. 2021

Description of condition and intervention

Universal newborn screening targets to detect any abnormalities of endocrine or metabolic disorders and institute timely management to prevent their progression to advanced stages. Some countries routinely screen babies for disorders of thyroid or adrenal gland before discharging them from health facility. Congenital hypothyroidism is a treatable cause of mental retardation, and if detected early may prevent life-long disability from the cause. We assess the effect and cost of this intervention as part of FairChoices: DCP Analytical tool.

Universal newborn screening and management of congenital endocrine or metabolic disorders

Intervention attributes

Type of interventions

Chronic care management

Delivery platform

First-level hospital

Newborn screening (DCP4 ID: MNH08)

FairChoices

DCP Analytic Tool

Equity

In addition to considerations like cost-effectiveness and health systems factors, dimensions of equity can be relevant for priority setting. The opportunity for a long and healthy life varies according to the severity of a health condition that individuals might have, so there are inequities in individuals' opportunities for long and healthy lives based on the health conditions they face. Metrics used to estimate the severity of illness at an individual level can be used to help prioritize those with less opportunity for lifetime health. FairChoices: DCP Analytics Tool uses Health adjusted age of death (HAAD), which is a metric that estimates the number of years lived from birth to death, discounting years lived with disability. A high HAAD thus represents a disease less severe in terms of lifetime health loss, while a low HAAD represents a disease that is severe on average, causing early death or a long period of severe disability. It is also possible to estimate the distribution of HAAD across individuals with a health condition. FairChoices shows for each intervention an average HAAD value of the conditions that are affected by respective interventions that have health effects. Additionally, a plot shows HAAD values for around 290 conditions (Johansson KA et al 2020).

Time dependence

Low level of urgency. Treatment outcomes not highly affected by some days of delay.

Population in need of interventions

Table 1: Population in need of interventions

Intervention	Treated population		Affected population		Disease state addressed
intervention	Treated age	Treated	Affected	Affected	
		fraction	age	fraction	
Congenital	births;	1	No effects for		Endocrine,
hypothyroidism,	both genders		diagnostic		metabolic, blood,
screening			intevention		and immune
					disorders
Congenital	births;	0.2	0 to	0.0006	Endocrine,
hypothyroidism,	both genders,	Incidence	99years		metabolic, blood,
management	incidence	under age			and immune
_		of 1			disorders

Newborn screening (DCP4 ID: MNH08)

FairChoices DCP Analytic Tool

Intervention effect and safety

Table 2: Effect and safety of management of congenital hypothyroidism

rable 2. Effect and safety of management of congenitarity potry rolaism						
Effect of intervention	Certainty of evidence					
Mortality Congenital hypothyroidism, management	0.9 relative reduction in neonatal mortality (assumed)	Low See appendix				

Model assumptions

Table 3: Summary of model parameters and values used in FairChoices – DCP Analytical Tool

Category	Model parameter	Notes				
Interventions	Congenital hypothyroidism, screening Congenital hypothyroidism, management					
Cost parameters		Į.				
Treated population		Global Burden of Disease Study 2019				
Gender	See Table 1					
Age						
Treated fraction						
Effect parameters						
Affected population	Those with condition					
Affected gender						
Affected fraction age	See Table 1					
Affected fraction						
Comparison	No intervention					
Mortality Reduction (RRR)	0.9					

EVIDENCE BRIEF

Newborn screening (DCP4 ID: MNH08)

FairChoices

DCP Analytic Tool

Intervention cost

The cost for universal newborn screening and management of congenital endocrine or metabolic disorders (for example, congenital hypothyroidism, phenylketonuria) that have high incidence rates and for which long-term treatment is feasible in limited-resource settings is estimated to be 0.7 USD per live birth and 1198.3 USD per episode respectively in 2001 in the Philippines (Padilla CD et al 2003).

Commented [SA1]: https://www.tm.mahidol.ac.th/seam eo/2003-34-suppl-3/southeast-2003-vol-34-supp-3-p-

References

WHO 2021: Available from https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies

Johansson KA et al 2020: Johansson KA, Coates MM, Økland JM, Tsuchiya A, Bukhman G, Norheim OF, Haaland Ø. Health by disease categories. Distributional Cost-Effectiveness Analysis: Quantifying Health Equity Impacts and Trade-Offs. 2020 Sep 30:105.

Padilla CD et al 2003: Padilla CD, Dans LF, Estrada SC, Tamondong MR Jr, Laceste JJ, Bernal RM. Cost-benefit analysis of newborn screening for galactosemia in the Philippines. Southeast Asian J Trop Med Public Health. 2003;34 Suppl 3:215-20. PMID: 15906739.

Appendix

Literature Review for effectiveness & safety

This literature search is an example of Level 1 search for intervention inputs taken from DCP3 or generated in an ad hoc manner (e.g., quick google search found one study of cervical cancer screening cost-effectiveness that was used to create an effectiveness parameter for that intervention).

Level of evidence of efficacy studies:

- 1. low (expert opinions, case series, reports, low-quality case control studies)
- 2. moderate (high quality case control studies, low quality cohort studies)

Newborn screening (DCP4 ID: MNH08)

FairChoices

DCP Analytic Tool

- 3. high (high quality cohort studies, individual RCTs)
- 4. very high (multiple RCTs, meta-analysis, systematic review, clinical practice guidelines)