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Strichartz estimates for nonlinear Schrodinger equations on
compact manifolds

Strichartz estimates are a type of refined Sobolev embeddings obtained in the
context of linear dispersive equations. They have been a key tool in the study of
nonlinear dispersive equations in the last decades (see for instance [2, 3]).

The first goal of this master project is to study the Strichartz estimates for the
linear Schrodinger equation on compact manifolds
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where u = u(z,t) is a complex value function, t € R,z € M, t € R, (M, g) is
a Riemannian compact manifold of dimension d > 1 and A = A, is the corre-
sponding Laplace-Beltrami operator on M.

It has been proved in [1, 4] that for any (p, ¢) satisfying 2 < p, ¢ < +oc and
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[wll oz, zaaryy < CU)|luoll grroary »

for any finite temporal interval /. Observe that, contrary to the R¢ case, one has
to admit loss of derivative of 1/p in the estimate. We will follow the proof in [1],
which relies on dispersive estimates on small time intervals, whose length depends
on the size of the space frequency of the initial data.

As an application, still following [1], we will prove some well-posedness re-
sults for the cubic nonlinear Schrédinger equation on compact manifolds
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in dimension d = 2 and d = 3.
Finally, if times allows, we will try to obtain new well-posedness results for
other nonlinear dispersive equations on manifolds.
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