Master Project

Didier Pilod

Strichartz estimates for nonlinear Schrödinger equations on compact manifolds

Strichartz estimates are a type of refined Sobolev embeddings obtained in the context of linear dispersive equations. They have been a key tool in the study of nonlinear dispersive equations in the last decades (see for instance [2, 3]).

The first goal of this master project is to study the Strichartz estimates for the linear Schrödinger equation on compact manifolds

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=0 \tag{1}\\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

where $u=u(x, t)$ is a complex value function, $t \in \mathbb{R}, x \in M, t \in \mathbb{R},(M, g)$ is a Riemannian compact manifold of dimension $d \geq 1$ and $\Delta=\Delta_{g}$ is the corresponding Laplace-Beltrami operator on M.

It has been proved in [1, 4] that for any (p, q) satisfying $2 \leq p, q<+\infty$ and $2 / p+d / q=d / 2$,

$$
\|u\|_{L^{p}\left(I, L^{q}(M)\right)} \leq C(I)\left\|u_{0}\right\|_{H^{1 / p}(M)},
$$

for any finite temporal interval I. Observe that, contrary to the \mathbb{R}^{d} case, one has to admit loss of derivative of $1 / p$ in the estimate. We will follow the proof in [1], which relies on dispersive estimates on small time intervals, whose length depends on the size of the space frequency of the initial data.

As an application, still following [1], we will prove some well-posedness results for the cubic nonlinear Schrödinger equation on compact manifolds

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{2}\\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

in dimension $d=2$ and $d=3$.
Finally, if times allows, we will try to obtain new well-posedness results for other nonlinear dispersive equations on manifolds.

References

[1] N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.
[2] F. Linares, and G. Ponce, Introduction to Nonlinear Dispersive Equations, (second edition), Springer, New York, 2015
[3] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
[4] G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Part. Diff. Equ., 27 (2002), 1337-1372.

