Reliability and resilience engineering for green hydrogen production process

Farhana Yasmine Tuhi

PhD candidate

Department of mechanical & industrial engineering, NTNU, Trondheim, Norway

18 March 2025

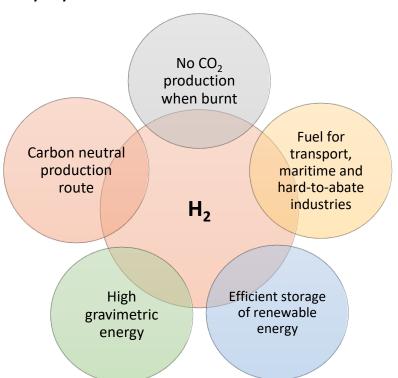
Outline

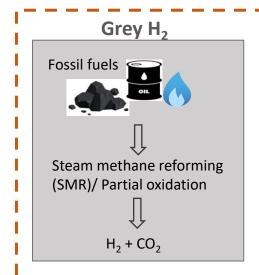
- > Hydrogen: alternative energy carrier
- \rightarrow H₂ production methods & color codes
- > Review article
 - ➤ Green H₂ production plant
 - ➤ Methodology and results
 - ➤ Contribution, research gaps and challenges

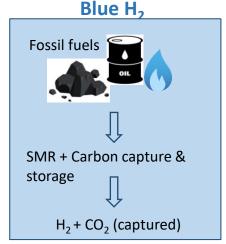
H₂: alternative energy carrier

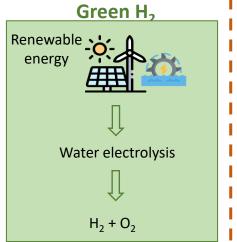
 According to Paris Agreement, the global average temperature increase should be kept below 2° C.

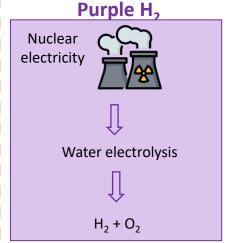
 EU countries and other nationalities aim to achieve carbon neutrality by 2050.

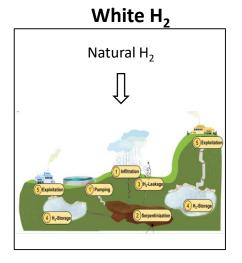





Table 1: Physical properties of hydrogen (IEA, 2019)


Property	Hydrogen	Comparison
Density (gaseous)	0.089 kg/m3 (0°C, 1 bar)	1/10 of natural gas
Density (liquid)	70.79 kg/m3 (-253°C, 1 bar)	1/6 of natural gas
Energy per unit of mass (LHV)	120.1 MJ/kg	3x that of gasoline
Energy density (ambient cond., LHV)	0.01 MJ/L	1/3 of natural gas
Specific energy (liquefied, LHV)	8.5 MJ/L	1/3 of LNG
Flame velocity	346 cm/s	8x methane
Ignition range	4–77% in air by volume	6x wider than methane
Autoignition temperature	585°C	220°C for gasoline
Ignition energy	0.02 MJ	1/10 of methane




H₂ production methods & color codes

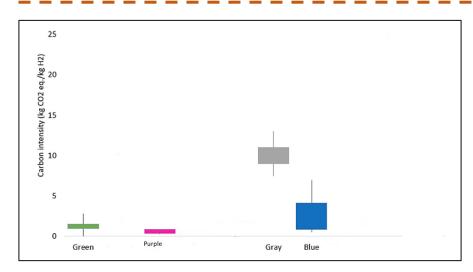


Figure 1: Carbon intensity of the hydrogen colors (Incer-Valverde et al., 2023)

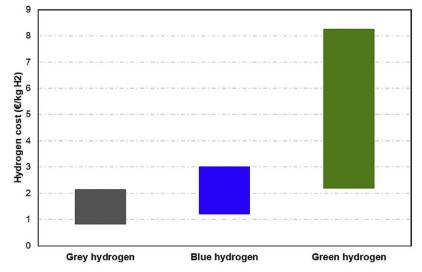
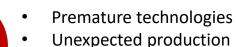
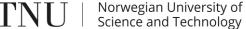



Figure 2: Reported cost of hydrogen production for different production pathways (Ajanovic et al., 2022)


Incidents & accidents

shutdown

High cost for green H2???

Associated expenses in maintenance and repairs

Reliability engineering

Reliability engineering refers to the engineering discipline for applying scientific knowledge to a component, plant, or process, generally termed as system, in order to ensure that it performs its intended function, for the required time duration in a specified environment.

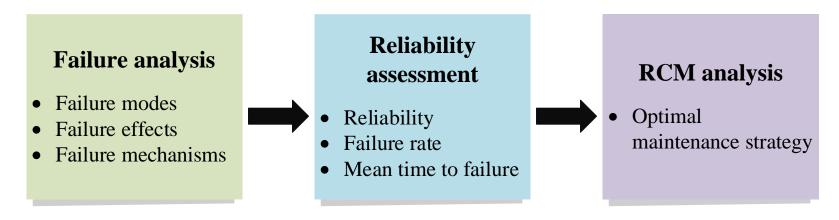


Figure 3: Three steps of reliability engineering and the results obtained from each step


Nuclear Industry

Chemical industry

Oil & gas industry

- Prevent technical failures
- Enhance operational efficiency
- Reduce unnecessary maintenance costs

Fail-safe, efficient operation and economic savings

Review article

Tuhi FY, Bucelli M, Liu Y. *Technical failures in green hydrogen production and reliability engineering responses: Insights from database analysis and a literature review.* Int J Hydrog Energy 2024;94:608–25.

The research objectives are:

- Present the state-of-the-art research work related to the application of reliability engineering steps in the hydrogen field and industries similar to it;
- Discuss contribution and potentials of reliability engineering in green H₂;
- Identify research gaps in the field of green hydrogen production;
- Highlight challenges of implementing the reliability engineering for green hydrogen production plant.

Green H₂ production plant

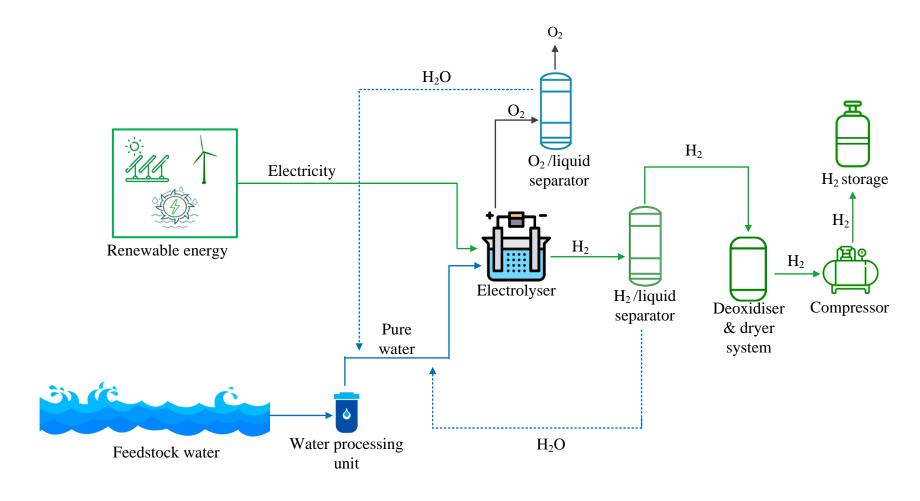


Figure 4: Schematic of a water electrolysis based green hydrogen production plant

Methodology

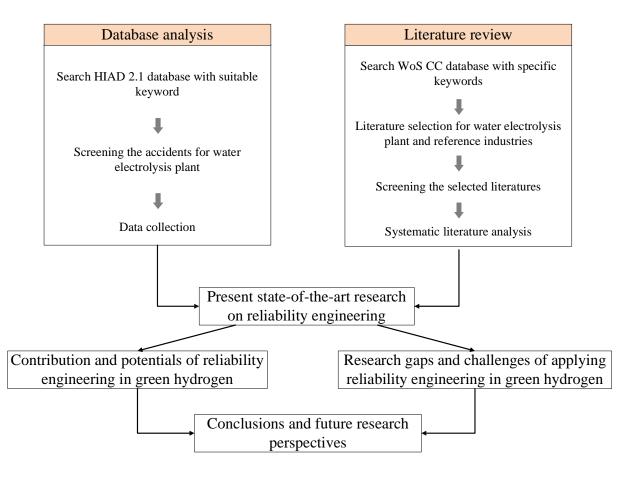


Figure 5: Overall research methodology

Reference industries

- Fuel cell technology
- Chemical industry
- Water treatment industry
- Oil and gas industry

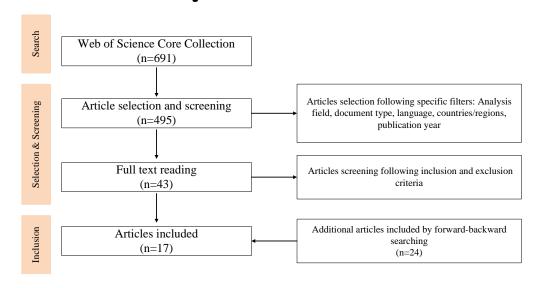
Table 2: Queries and filters selected in Web of Science Core Collection database

Туре	Description	
Queries	1. "Hydrogen production" AND ("reliability analysis" OR "reliability	
	engineering")	
	2. "Fuel cell" AND ("reliability analysis" OR "reliability engineering")	
	3. "Hydrogen" AND ("reliability analysis" OR "reliability engineering")	
	 "Chemical industry*" AND ("reliability analysis" OR "reliability engineering") 	
	"Oil and gas" AND ("reliability analysis" OR "reliability engineering")	
	6. "Hydrogen" AND "Reliability centered maintenance"	
	7. "Chemical industry" AND "Reliability centered maintenance"	
	8. "Oil and gas industry" AND "Reliability centered maintenance"	
Analysis Field	Topic (searches title, abstract and author keywords)	
Document Type	Journal articles, review articles, conference proceedings, reports	
Language	English	
Countries/Regions	Global	
Publication Year	Not specified	

Results: Database analysis & Literature review

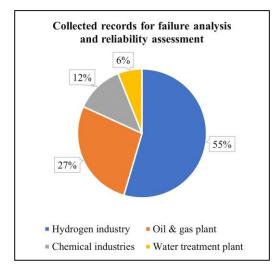
Accidents reviewed

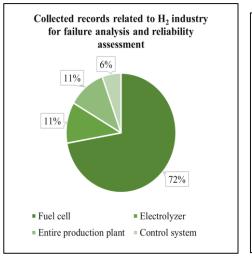
HIAD #778 **HIAD #889**

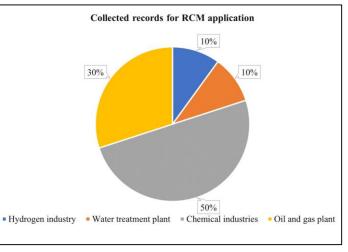

HIAD #243 HIAD #1084

HIAD #1002 HIAD #1037

HIAD #970 HIAD #1065




Event description Failure cause Consequence Damage & Fatalities Lessons learnt



Failure analysis & reliability assessment = 31Reliability centered maintenance (RCM) = 10

Total number of articles included (n=41)

Contribution & potentials of reliability engineering in green H₂

Contributions to understanding & avoiding failures

- Well recorded failure data in database:
- Proven methods for determining failure modes, causes probabilities;
- Established approaches of identifying critical components.

Contributions to guiding system design & development

- Facilitated procedure for understanding system reliability;
- Guiding system development.

Contributions to system operation assurance

- Well developed theories and framework for planning & managing maintenance;
- Preparedness for system degradation and unexpected event.

Identified research gaps & challenges

Research gaps

- Insufficient failure analysis and degradation modelling of electrolyzers;
- Lack of reliability assessment of auxiliary components;
- Overlook the impacts of human and environmental factors:
- Absence of study on maintenance of water electrolysis plants.

Challenges

- Absence of reliability database specific for hydrogen;
- Particular degradation phenomena and high explosion risk due to hydrogen's inherent properties;
- High complexity due to multi-system coupling and multioperational states;
- Intermittent issues related to power supply;
- Inexperience in human-machine interplays and human factors issues:
- Needs of multidisciplinary approach.

References

- Tuhi FY, Bucelli M, Liu Y. Technical failures in green hydrogen production and reliability engineering responses: Insights from database analysis and a literature review. Int J Hydrog Energy 2024;94:608–25. https://doi.org/10.1016/j.ijhydene.2024.11.129.
- Blay-Roger R, Bach W, Bobadilla LF, Reina TR, Odriozola JA, Amils R, et al. Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas. Renew Sustain Energy Rev 2024;189:113888. https://doi.org/10.1016/j.rser.2023.113888.
- Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen. Int J Hydrog Energy 2022;47:24136–54. https://doi.org/10.1016/j.ijhydene.2022.02.094.
- Mao J, Li Z, Xuan J, Du X, Ni M, Xing L. A review of control strategies for proton exchange membrane (PEM) fuel cells and water electrolysers: From automation to autonomy. Energy AI 2024;17:100406. https://doi.org/10.1016/j.egyai.2024.100406.
- Incer-Valverde J, Korayem A, Tsatsaronis G, Morosuk T. "Colors" of hydrogen: Definitions and carbon intensity. Energy Convers Manag 2023;291:117294. https://doi.org/10.1016/j.enconman.2023.117294.
- IEA. (2019). The Future of Hydrogen.

Thank you for your attention!

farhana.tuhi@ntnu.no

