Separating and joining variables in monomial ideals

Gunnar Fløystad

March 20, 2022

Highlights

(1) Separations of monomial ideals
(2 Polarizations of artinian monomial ideals

Highlights

- Separations of monomial ideals
- Polarizations of artinian monomial ideals

(3) Focus

Triangulations of polygons

Highlights

- Separations of monomial ideals
- Polarizations of artinian monomial ideals

(3) Focus

Triangulations of polygons

- Monomial ideals associated to trees
- \rightsquigarrow stacked simplicial complexes

Separating a monomial ideal

- $I=\left(x^{2}, x, y, y^{2}\right) \leq k[x, y]=S$, \quad Rerdution $I \longleftarrow S(-2)^{3} \longleftarrow S(-3)^{2}$
- $]=\left(x_{1} x_{2}, x_{1}, y, y^{2}\right) \leq k\left[x_{1}, x_{2}, y\right]=\bar{T}$, Resolution $J \leftarrow T(-2)^{3} \leftarrow \tau(-3)^{2}$
$\frac{k[x, y]}{I}$ is a quotient of $\frac{k\left(x_{1}, x_{2}, y\right]}{J}$ - by dividing out by $\frac{x_{2}-x_{1}}{}$.
- $X_{2}-x_{1}$ is a nonzero divider (Megutur element) in $\frac{k\left[x_{1}, x_{2}, y\right\}}{J}$
- $J_{1}=J=\left(x_{1} x_{2}, x_{1}, y, y^{2}\right)$ is a separation of $I=\left(x_{1}^{2} x, y_{y} y^{2}\right)$

Polarization
(0) Separate further to $J_{2}=\left(x_{1}, x_{2}, x_{1} y_{1}, y_{1}, y_{2}\right) \subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]=T_{2}$

Resolution $J_{2} \longleftarrow T_{2}(-2)^{3} \longleftarrow T_{2}(-3)^{2}$
$\frac{k\left[x_{1}, x_{1}, y\right]}{J_{1}}$ is a quotient of $\frac{h\left[x_{1}, x_{2}, y_{1}, y_{2}\right]}{J_{2}}$ - by dividing out by $y_{2}-y_{1}$

- $y_{2}-y_{1}$ is nen-zerodivisor in

$$
\frac{\left.k \mid x_{1}, x_{2}, y_{1}, y_{2}\right]}{J_{2}}
$$

square her
pom successive separations of I

SAY: II is pelavization of I.

Stanley-Reisner correspondence

V set. Simplicial capplex on V : Family Δ of subsets of V
such that: $F \in \triangle$ and $G \leq F \Rightarrow G \in \triangle$

- $V=\{1,2,3,4\}, \quad \Delta$:
$\{12,3,\{3,4\}$
$\{12\},\{13\},\{2,3\}$

$$
\{1],\{2\},\{3\},\{4\}
$$

- $\sim \leadsto$ Squarkee manamial idal $I_{\Delta}=\left(x_{1} x_{4}, x_{2}, x_{4}\right)$ generated by menomids $X_{F}=\prod_{i \in f} x_{i}$ such that $F \notin \triangle$
- Simplicial canpleres on $V \stackrel{(1-1)}{\longleftrightarrow}$ Squartue menomial ideals in polynemical ring $k\left[x_{V}\right]_{v \in V}$.

Simple separation

- Example:. Simplicial complex associated to $J_{2}=\left(x_{1} x_{2}, x_{2}, y_{1}, y_{1}, y_{2}\right)$ is:

- I $\stackrel{\text { ied }}{\subseteq} k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, $J \stackrel{\text { ied }}{\subseteq} k\left(x_{1}^{1}, x_{1}^{2}, x_{2}, x_{3}, \ldots, x_{n}\right]$.

Definition J is a simple separation of I if:

2. Each of x_{1}^{\prime} and x_{1}^{2} occur in minimal generators of I
3. $x_{1}^{1}-x_{1}^{2}$ is a nonzero divisor of $\frac{k\left[x_{1}^{1}, x_{1}^{2}, x_{2}, \cdots, x_{n}\right]}{y}$

Separation, polarization and separated models

J is a separation of I it is obtained by a succession of simple separations.

Separation, polarization and separated models

J is a separation of I it is obtained by a succession of simple separations.
J is a separated model (of I) if it cannot be further separated.

Separation, polarization and separated models

J is a separation of I it is obtained by a succession of simple separations.
J is a separated model (of I) if it cannot be further separated.
J is a polarization of I it is:

- a separation;
- squarefree.

Power of maximal graded ideal
 Three variables

$$
I=(x, y, z)^{2}=\left(x^{2}, x y, x z, y^{2}, y z, z^{2}\right) \subseteq k[x, y, z] .
$$

Two distinct polarizations:

$$
\begin{aligned}
& J_{1}=\left(x_{1} x_{2}, x_{1} y_{1}, x_{1} z_{1}, y_{1} y_{2}, y_{1} z_{1}, z_{1} z_{2}\right) \subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right] \\
& J_{2}=\left(x_{1} x_{2}, x_{1} y_{2}, x_{1} z_{2}, y_{1} y_{2}, y_{1} z_{2}, z_{1} z_{2}\right) \subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right]
\end{aligned}
$$

Two polarizations
Three variables
I. $\quad\left(x_{1}, x_{2}, x_{1} y_{1}, y_{1} y_{2}, x_{1} z_{1}, y_{1} z_{1}, z_{1} z_{2}\right)$
$\subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right]$

II. $\left(x_{1} x_{2}, x_{1} y_{2}, y_{1}, y_{2}, x_{1} z_{2}, y_{1} z_{2}, z_{1} z_{2}\right)$

$$
\subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right]
$$

Polarization
Artinian monomial ideal, two variables

- $I=\left(x^{2}, x y, y^{3}\right) \leqslant h[x, y\}$
- Polavization $J=\left(x_{1} x_{2}, x_{1}, y_{1}, y_{1}, y_{2} y_{3}\right) \subseteq k\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right]$

Conjecture

Polarizations of Artinian monomial ideals

Almousa, Fløystad, Lohne, JPAA, 2022

Any polarization of an artinian monomial ideal $\subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a triangulation of a ball.

Conjecture

Polarizations of Artinian monomial ideals

Almousa, Fløystad, Lohne, JPAA, 2022

Any polarization of an artinian monomial ideal $\subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a triangulation of a ball.

- Shown for standard polarizations (S.Murai, JCSA)
- Shown for $n=3$ (Almousa, Fløystad, Lohne, JPAA, 2022)
- Shown for letterplace ideals (D'Ali, Fløystad, Nematbakhsh, TAMS, 2019)

Conjecture

Polarizations of Artinian monomial ideals

Almousa, Fløystad, Lohne, JPAA, 2022

Any polarization of an artinian monomial ideal $\subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a triangulation of a ball.

- Shown for standard polarizations (S.Murai, JCSA)
- Shown for $n=3$ (Almousa, Fløystad, Lohne, JPAA, 2022)
- Shown for letterplace ideals (D'Ali, Fløystad, Nematbakhsh, TAMS, 2019)

By a result of A.Björner: Enough to show:

- Any polarization of an artinian monomial ideal is shellable, or even weaker:
- Any polarization of an artinian monomial ideal is constructible

Example
(2) $h=(x z, x y, y z) \subseteq k[x, y, z]=T \sim \sim$ Simplicial

Resolution $U \longleftarrow T(-2)^{3} \longleftarrow T(-3)^{2}$

$$
I=\left(x_{1}, x_{2}, x_{1}, y_{1}, y_{1}, y_{2}\right)
$$

Triangulation of heptagon

$$
\begin{aligned}
& \text { Stankey-Reisser ideal } \\
& K=\left(u_{1}, u_{3}, u_{1}, u_{4}, \cdots, u_{4} u_{2}\right) \leq K\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{0}, u_{7}\right\}
\end{aligned}
$$

$J \leq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}, w_{1}, w_{2}\right]$

$$
U \leq K\left|u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\rangle
$$

$I=(x, y, z, w)^{2} \leq h[x, y, z, w]$

Polarizations of second power of graded maximal ideal Bijection with trees

- Polarizations of $\left(x_{1}, x_{2}, \ldots,\left.x_{m}\right|^{2} \leq h\left[x_{1}, x_{2}, \ldots x_{m}\right] \stackrel{(1-1)}{\longleftrightarrow}\right.$ Tues with m edges
\& Path incriented thee \sim, \ldots monomial $m_{v, w}=X_{e, 0} \cdot X_{t, 1}$ $\because \underset{e}{t} \cdot \cdots{\underset{f}{e}}_{0^{w}}^{\sim}$ monomial $m_{v, w}=X_{e_{1}} \cdot X_{1,1}$

$\leadsto I$ deal $J=I(\tau)=\left(m_{i j}\right)_{1 \leqslant i<j \leqslant s}$

$$
\begin{array}{ll}
m_{12}=x_{a 1} x_{a 0} & m_{13}=x_{a 1} x_{b 1} \\
m_{14}=x_{a 1} x_{c 0} & \vdots
\end{array}
$$

$$
\subseteq k\left[X_{a_{0}}, X_{a 1}, X_{b 0}, X_{b_{1}}, X_{c t}, X_{c 1}, X_{t_{0}}, X_{d t}\right]
$$

Stacked simplicial complexes

Definition (Stacked simplicial complex)

Let X be a pure simplicial complex

Order facets $F_{1}, F_{2}, \ldots, F_{m}$. Let X_{p} subcomplex generated by $F_{1}, F_{2}, \ldots, F_{p}$.
If each X_{p} can be obtained from X_{p-1} by attaching F_{p} to a single codimension one face of X_{p-1}, then X is a stacked simplicial complex.

How to get stacked simplicial complexes
Separating and joining

- Example

- Theorem
(Floystad, Orlich 2021)
Any stachal simplicial complex Δ is cbtainal by: polarize join $J \leq k\left[x_{1}^{\prime}, x_{2}^{2} x_{2}^{2} x_{2}^{2} \cdots x_{n}^{\prime} x_{2}^{2}\right]$ In particular Is and I have same graded Betti numbers

Independent vertex sets

Definition

Let G be a graph with vertex set V. A subset $W \subseteq V$ is an independent vertex set if there is no edge with both vertices in W.

Regular subspaces

- T a tree with vertex set V and edge set E.
- By previous construction we get ideal $I(T)$ in $k\left[x_{E_{01}}\right]$.

Regular subspaces

- T a tree with vertex set V and edge set E.
- By previous construction we get ideal $I(T)$ in $k\left[x_{E_{01}}\right]$.
- $\left\langle x_{e 0}, x_{e 1}\right\rangle_{e \in E}$ be the linear space generated by the variables.

Regular subspaces

- T a tree with vertex set V and edge set E.
- By previous construction we get ideal $I(T)$ in $k\left[x_{E_{01}}\right]$.
- $\left\langle x_{e 0}, x_{e 1}\right\rangle_{e \in E}$ be the linear space generated by the variables.
- A subspace $L \subseteq\left\langle x_{e 0}, x_{e 1}\right\rangle_{e \in E}$ with a basis of variable differences, is a regular subspace if this basis is a regular sequence for $\frac{k\left[x_{E_{01}}\right]}{l(T)}$.

Quotients

Fløystad-Orlich, 2021

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$
$\stackrel{1-1}{\longleftrightarrow}$ partitions of the vertex set of V.

Quotients

Fløystad-Orlich, 2021

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$ $\stackrel{1-1}{\longleftrightarrow}$ partitions of the vertex set of V.

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$ giving squarefree quotients $\stackrel{1-1}{\rightleftarrows}$ partitions of the vertex set of V into independent vertex sets $\stackrel{1-1}{\longleftrightarrow}$ partitions of the edge set E

Quotients

Fløystad-Orlich, 2021

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$
$\stackrel{1-1}{\longleftrightarrow}$ partitions of the vertex set of V.

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$ giving squarefree quotients $\stackrel{1-1}{\longleftrightarrow}$ partitions of the vertex set of V into independent vertex sets $\stackrel{1-1}{4}$ partitions of the edge set E

Theorem

Regular linear spaces for $k\left[x_{E_{01}}\right] / I(T)$ giving triangulations of balls $\stackrel{1-1}{\longleftrightarrow}$ partitions of the edge set E into independent vertex sets

Tree of heptagon

Stanky-Meiswer ileal

$$
K=\left(u_{1}, u_{3}, u_{1}, u_{4}, \cdots, u_{4} u_{2}\right) \leq K\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}
$$

$$
\text { Separation } \quad \begin{aligned}
& \text { join } \\
& U \leq k\left[x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}, w_{1}, w_{2}\right] \\
& \left.u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right]
\end{aligned}
$$

$$
I=(x, y, z, \omega)^{2} \subseteq h[x, y, z, \omega]
$$

Partitions
©
T :

- We get ideal K of heptagon by joining variables in $I(\tau)$ dividing by regular variable dilterenc
- Partition of vertices $\{1,5\},\{2\},\{3\},\{4\}$. Partition cledges $\{a, d\},\{6\},\{c\}$.
(1) $m_{15}=x_{a 1} x_{d 0} \leadsto$ Divide out by $X_{a 0}-X_{d 1}$.

Separate and join variables
 Underused

- X a simplicial complex
- Can its Stanley-Reisner ideal be:
- separated
- joined?

Examples

Cannct be seperated Tosepante, lill in (hondayy is costraction)

0

Canspante $x_{3} \nearrow_{x_{3}{ }^{2}}{ }^{\prime}$

Structural insight

- X cantractible simplicial complex, for instance triangalation af ball.
- Can you sponate $K=I x ?$ Crod chance \leadsto Seprentid molel J.
- Is J a pelarization of an artinian monomial ideal I?
- Cet

structural innight.

Conjecture

Polarizations of Artinian monomial ideals

Almousa, Fløystad, Lohne, JPAA, 2022

Any polarization of an artinian monomial ideal $\subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a triangulation of a ball.

Enough to show:

- Any polarization of an artinian monomial ideal is shellable, or even weaker:
- Any polarization of an artinian monomial ideal is constructible

Stockholm

Thank you!

