
Resource management for plugins in the Dynamic

Presentation Generator

Kelly Alexander Teigland Whiteley

Department of Informatics

University of Bergen

Norway

Long Master thesis

November 2011

Foreword

This document is the result of my master degree in informatics at University of
Bergen.

The thesis evaluates and improves the plugin architecture of Dynamic Presentation
Generator 2.1.

I would like to use this opportunity to give special thanks to my supervisors Khalid A.
Mughal and Torill Hamre for their great cooperation, dedication and advice through-
out my whole Master degree. Thanks to Haakon Nilsen for great help with technical
issues and advice. Thanks also to my fellow Master student Aleksander Waage for
the cooperation in this Master thesis and the courses leading up to it.

Thanks to my fellow Master students Øystein Lund Rolland, Morten Høiland, Alek-
sander Vines and Jostein Bjørge for supporting me and making this all a very good
and memorable experience.

Finally, I would like to give thanks to my family for all the support throughout my
studies, with special thanks to my wife, Lene Whiteley, for all her loving support
and encouragement.

Kelly Alexander Teigland Whiteley

Bergen, 19. November 2011

2

Contents

1 Introduction 15

1.1 Background . 15

1.2 Motivation . 16

1.3 Goals . 17

1.3.1 Overall goal . 17

1.3.2 Subgoals . 17

1.4 Development methodologies . 17

1.5 Development tools . 18

1.6 Structure of thesis . 18

2 Background and Problem Description 21

2.1 Web Content Management System 21

2.2 Presentation Patterns . 21

2.2.1 Presentation Pattern Speci�cation 22

2.2.2 Presentation patterns and presentations 22

2.2.3 The structure of a presentation pattern 23

2.3 Dynamic Presentation Generator . 24

2.3.1 Lobby . 24

2.3.2 Presentation Viewer (PV) . 25

2.3.3 Presentation Content Editor (PCE) 25

2.3.4 Presentation Manager (PM) 25

2.4 Problem Description . 25

2.4.1 The plugin architecture of DPG 26

2.4.2 Resource management in DPG's plugin architecture 26

Plugin persistence API . 27

Technologies for persisting large amounts of end-user data . . 27

Guidelines for the new solution 27

3 Evaluation of DPG's plugin architecture and entity list handling 29

3.1 The plugin architecture of DPG . 29

3.1.1 The Plugin Interface . 30

3.1.2 Making a plugin . 31

3.1.3 The Plugin Manager . 32

3

Contents

3.1.4 Entity Field Types . 32

3.2 Weaknesses of the current plugin architecture 34

3.2.1 Multiple Field Input Plugins 34

3.2.2 Handling multiple entity instances in one view 35

3.2.3 Lists and subentities . 36

4 Improvements of DPG's plugin architecture 41

4.1 Multiple �eld plugins . 42

4.1.1 Revert to a similar solution to DPG 2.0 42

4.1.2 Extend the existing FieldPlugin interface 43

4.1.3 Refer to a plugin with a new attribute in the pattern 43

4.1.4 Plugin de�ned pattern structure 43

4.1.5 Final solution and implementation 44

Super�cial changes to DPG 45

Changes to the plugin interface 48

Changes to the DPG architecture 48

4.2 Multiple entity instances in one view 52

4.2.1 View composition plugin . 52

4.2.2 Single view list . 52

4.2.3 Final solution . 52

Changes to the presentation pattern speci�cation 53

Changes to the DPG architecture 54

5 Proposed solutions for plugin resource management in DPG 55

5.1 Current solution . 56

5.2 Goals for a new plugin resource solution 60

5.3 Proposed solutions . 60

5.3.1 Improvements in the current API 61

5.3.2 Direct access through a standardized query language 62

5.3.3 Indirect access through stored procedures or an API 63

5.4 Evaluation of proposed solutions . 65

6 Evaluation of data models and persistence technologies for plugin

resources in DPG 67

6.1 Current data model . 67

6.2 Criteria for persistence technology 68

6.2.1 Uniform solution . 69

6.2.2 Transaction support . 69

6.2.3 Performance . 70

6.2.4 Support for caching . 70

6.2.5 Maturity and documentation 70

6.2.6 Portability . 70

4

Contents

6.2.7 Character encoding of data 70

6.2.8 Spring integration . 71

6.2.9 Follows a standard . 71

6.2.10 Backwards Compatibility . 71

6.2.11 Support for versioning of data 71

6.3 Alternative persistence technologies 72

6.3.1 Relational . 72

MyBatis . 73

6.3.2 Hierarchical . 75

JackRabbit . 76

6.3.3 Object Oriented . 78

Hibernate . 80

6.4 Evaluation of proposed technologies and conclusion 81

7 Implementing new plugin resource management in DPG 83

7.1 Goals and challenges . 83

7.2 The Hibernate and JPA persistence context 84

7.3 Using Hibernate/JPA and the Spring framework 85

7.3.1 Native Hibernate vs standard JPA implementation 85

7.3.2 The JPA implementation . 86

7.4 Entity management . 88

7.5 Query language . 89

7.6 New plugin resource interface . 90

7.7 Transaction management and locking 95

7.8 Caching . 96

7.9 Separation of plugin data . 96

7.10 Integration testing . 97

7.11 Evaluation of implementation . 99

8 Evaluation, Experiences, further development and conclusion 103

8.1 Evaluation of goals . 103

8.2 Experiences . 105

8.2.1 Development process and methodology 105

8.2.2 Technologies . 106

8.3 Further development . 106

8.3.1 Plugins reacting to events in DPG 106

8.3.2 Communication between plugins 107

8.3.3 New functionality in PCE . 107

8.3.4 Further abstract the plugins from the pattern designer 107

8.3.5 Abstract plugins from the DPG core 108

8.3.6 Further development of PPDev 108

8.3.7 Upgrading plugins . 108

5

Contents

8.3.8 Tighter PV and PCE integration 109
8.3.9 Versioning of persistent data 109
8.3.10 Support for multiple languages 109
8.3.11 Extended support for simple entity �eld types 109
8.3.12 Leveraging on future versions of Spring, JPA and Hibernate . 110
8.3.13 Improving the persistence solution in DPG 110

8.4 Conclusion . 111

A Guidelines for using the new plugin resource interface 123

A.1 Entities . 123
A.2 Queries . 126
A.3 Saving, updating and removing entities 127
A.4 Structuring resources . 127

6

List of Figures

2.1 INF100F and INF101F are presentations which are instances of the
same course pattern. 22

2.2 The relationships between the components de�ned by the presentation
pattern speci�cation. 23

3.1 Example of an architecture following the Plugin pattern. 30

3.2 The plugin manager of DPG 2.1 uses plugins to build the presentation
document one �eld element at a time. 33

3.3 Multiple entity-instances mapped to one view. 35

3.4 When a new presentation is made from a pattern, the ContentDocumentBuilder
in DPG 2.1 builds the content documents for the presentation. . . . 37

3.5 The FormBuilder class in DPG 2.1 builds the forms to be presented
in the PCE. 38

3.6 The FormProcessor class in DPG 2.1 updates the content docu-
ments based on input from the PCE. 40

4.1 Entities generated by the plugin DynamicMapPlugin shown in the
PCE. 46

4.2 Map generated by the plugin DynamicMapPlugin with input from
the PCE. 47

4.3 The new ContentDocumentBuilder class in DPG 2.1 builds the
presentation content document from plugin generated patterns as well. 50

4.4 The new FormBuilder class in DPG 2.1 builds the forms to be
presented in the PCE using plugin generated patterns as well. 51

5.1 The overall architecture of the plugin resource management which is
the topic of discussion in chapters 5 and 6. 56

5.2 Tree showing the logical organization of the two types of content in
DPG, PCE content and plugin resources, separated by folders. 57

5.3 The poll plugin updates three di�erent documents in a yes/no poll. . 59

5.4 Plugins get access to resources through the PluginResourceDao
interface. The stipled lines show which resources plugins have access to. 60

7

List of Figures

5.5 Plugins get access to resources through the PluginResourceDao
interface. The stipled lines show the plugins' access to resources. . . 61

5.6 Plugins with direct access to the persistent storage. 62
5.7 Plugins with indirect access to a persistence framework through an API. 64
5.8 Plugins with indirect access to persistent storage through a framework. 64

6.1 The current persistence implementation of DPG using JackRabbit. . 68
6.2 Example showing the hierarchical structure of comments. 75
6.3 Example of a JCR node tree for a hotel reservation system. The circles

are nodes, the rectangles are properties containing the data, and the
stipled lines show references between nodes. 77

6.4 Communication between a RDBMS and the Java application through
JPA. 79

7.1 Entity objects managed by the persistence context are synchronized
with their respective rows in the database. 85

7.2 The new plugin resources architecture of DPG. 87
7.3 A plugin persisting and accessing resources using persistent objects

and JPA Criteria queries. 94
7.4 EclEmma eclipse plugin showing unit test code coverage. Code marked

in green means it is covered by a test. 99
7.5 Poll plugin can use the new plugin resource solution to easily and

e�ciently fetch the required data through a JPA entity. 101

8

List of Tables

5.1 Comparison matrix of persistence solutions for plugins in DPG. . . . 65

6.1 Example of tabular data. 72
6.2 Comparison matrix of persistence technologies. 81

9

10

Source Code

3.1 Plugins de�ned by implementing FieldPlugin and setting plugin name
in an annotation. 31

3.2 Plugins in DPG 2.0 were explicitly referred to with the pluginCon�g
attribute. 32

3.3 The type attribute always refers to a plugin in DPG 2.1. 33
3.4 Example of how a list is de�ned in the presentation pattern. 36
3.5 The conditions of the add or edit entity action in the FormProcessor. 38
4.1 Example of how the pattern would look with a plugin reference in the

entity. 43
4.2 Example of how a pattern designer would need to de�ne the plugin

required structure. 44
4.3 Example of how the pattern would look after the solution of a plugin

de�ned structure. 44
4.4 The generatePatternStructure() method is added to the FieldPlugin

interface. The semantics of the other methods are explained in section
3.1.1. 48

4.5 Example of the new pattern with single view lists. 53
5.1 The current interface for plugin resources. 58
6.1 Mapping comments in a relational database to a Java object with

annotations. 74
6.2 Retrieving comments made by Kelly using MyBatis. 74
6.3 Example of a JPA entity mapping for customers with reservations. . 79
6.4 Setting the character encoding for persistent storage through JDBC. 81
7.1 The current data source con�guration using a local PostgreSQL server. 88
7.2 A simple JPQL query fetching all User entities with ages over 30. . . 90
7.3 The new plugin resource interface . 91
A.1 Two entities with bidirectional references 125
A.2 A username can include a malicious JPQL code to gain access to

additional information . 126
A.3 A Criteria query executed using PluginResourceJpaDao 126

11

12

De�nitions

ACID: Atomicity, Consistency, Isolation and Durability
API: Application Programming Interface
CLOB: Character Large OBject
CMS: Content Management System
CRUD: Create, Read, Update and Delete
CSS: Cascading Style Sheet
DAL: Data Access Layer
DAO: Data Access Object
DBMS: DataBase Management System
DPG: Dynamic Presentation Generator
HTML: HyperText Markup Language
HQL: Hibernate Query Language
IoC: Inversion of Control
JAFU: JAva i Fjern Undervisningen
JAR: Java ARchive
JCR: Java Content Repository
JDBC: Java DataBase Connectivity
JDOM: Java Document Object Model
JPA: Java Persistence API
JPG: Java Presentation Generator
JPQL: Java Persistence Query Language
JSR: Java Speci�cation Request
LOB: Large OBject
MVC: Model View Controller
ORM: Object Relational Mapping
OXD: OpenX Data
PCE: Presentation Content Editor
PM: Presentation Manager
PV: Presentation Viewer
RDBMS: Relational DataBase Management System
SQL: Structured Query Language
TDD: Test Driven Development
UiB: Universitetet i Bergen (eng:University of Bergen)

13

Source Code

UML: Uni�ed Modeling Language
URL: Uniform Resource Locator
WYSIWYG: What You See Is What You Get
XML: Extensible Markup Language
XP: eXtreme Programming
XSLT: Extensible Stylesheet Language Transformations

14

1
Introduction

1.1 Background

Java in distant learning (JAFU)(Norwegian: Java i Fjernundervisningen) is a project
at the Department of Informatics at the University of Bergen (UiB), which was
started in 1999. Its goals are to o�er web-based courses for students who do not
have the opportunity to attend campus lectures. JAFU has mainly o�ered the two
Java programming courses; INF-100F and INF-101F. These courses are composed
mostly of the same curriculum as their campus counterparts; INF-100 and INF-101.
Lecture notes, assignments and other resources are made available on a web site for
the students. The lecturer and teaching assistants of the course manage these re-
sources, publish news and answer questions from students. To make this easier, tools
for web based publishing and dynamic content management have been developed as
part of the JAFU project.

Khalid A. Mughal presented the concept of presentation patterns in the article Pre-
sentation Patterns: Composing Web-based Presentations [75]. This concept describes
how content can be separated from the presentation, promoting reuseability. The
�rst implementation of this concept was in the system Java Presentation Generator,
developed under the JAFU project in Kevin Chruickshank's Master thesis [23]. The
goal was to design a web site for courses.

15

Chapter 1. Introduction

In 2004, the Dynamic Presentation Generator was developed. This took over from
JPG as a new and improved implementation of the presentation pattern concept. It
was intially developed by Yngve Espelid during his Master thesis [28], and has since
been the focus of development at JAFU by many Master students. DPG is a generic
Content Management System which is used for building web pages dynamically and
managing their content.

In 2008, Karianne Berg [17], Bjørn Ove Ingvaldsen [60] and Bjørn Christian Sæbak
[93] evaluated DPG in their Master theses. Their conclusion was that DPG proved
di�cult to use and was very error prone, because it required knowledge of the system
and technologies to publish and manage content. It was therefore decided to redesign
DPG from scratch, leading to version 2.0. This version provides with an intuitive
web interface for publishing and managing content, as well as a modern, modular
system architecture.

DPG was further developed in 2010 by Tobias Olsen [78] and Peder Skeidsvoll [94],
leading to the current version of 2.1. This included a vast improvement of the plugin
architecture of DPG, as well as general improvements of functionality and robustness
of the system.

Morten Høiland [52] and Øystein Lund Rolland [91] developed complex plugins for
data collection using XForms [112], in their Master theses. This tested DPG's sup-
port for user interaction and collection of large amounts of data, and ultimately
proved that DPG does not facilitate for e�ective and e�cient functionality for data
collection.

This Master thesis evaluates and improves the current plugin architecture of DPG
2.1, with the main focus of improving persistent plugin data and resource handling.
Parts of the thesis will be work in collaboration with Aleksander Waage [114], which
is speci�ed at the start of the relevant chapters.

1.2 Motivation

DPG has proved to be successful for content management and designing web-based
presentations. Unfortunately, it has been lacking in support for data collection and
user interaction, which are the plugins' responsibilities in DPG. The current plugin
architecture limits plugins to very simple data collection. To expand DPG's appli-
cations, the plugin architecture needs to be improved. This is the main motivation
for this Master thesis.

The trigger for this motivation was discussions in the JAFU project regarding mi-

16

1.3. Goals

gration of data with other systems, speci�cally OpenX Data (OXD) [79] and its large
amounts of geographic data. This required complex and dynamic map plugins, as
well as good support for plugin resources.

1.3 Goals

1.3.1 Overall goal

The overall goal of this Master thesis is to expand the plugin architecture of DPG
to provide a better plugin resource solution and facilitate for more complex plugins.

1.3.2 Subgoals

The overall goal is composed of the following sub-goals:

� Evaluate the current plugin architecture of DPG 2.1

� Propose and evaluate solutions for improvement of the plugin architecture in
DPG, and implement the best solutions

� Evaluate the current solution for persistent storage of DPG plugin data

� Propose and evaluate new solutions for plugin resources in DPG

� Implement an improved plugin resource solution for DPG

� Provide guidelines for using the new plugin resource solution

1.4 Development methodologies

Throughout the development, the candidate has tried to follow agile development
methodologies. Principles were mainly taken from eXtreme programming (XP) [67],
such as test driven development(TDD), pair programming, collective code ownership,
refactoring and modular design. Martin Fowler's guidelines for clean and agile code
development [68] have also been followed. This made a lot of sense, given that DPG
is being worked on, and will continue to be worked on by multiple Master students
in the JAFU project.

17

Chapter 1. Introduction

1.5 Development tools

The standard development tool used at JAFU is Eclipse [39], and this was the
tool used to write all the Java code in this thesis. To build DPG and manage its
dependencies, the build tool Apache Maven was used and run as an Eclipse plugin
using M2Eclipse [8]. DPG has been deployed and tested with the web containers

Apache Tomcat [38] and Jetty [22]. Jetty was mostly used for testing simple changes
during development and was run as a Maven plugin, while Tomcat was used for
deployment testing.

The generated HTML and JavaScript [119] code was tested with the popular browsers;
Mozilla Firefox [38], Google Chrome [44], Microsoft Internet Explorer [71] and Opera
[97]. For script debugging, mostly Opera was used.

LATEXwas used to write this thesis, andMicrosoft Visio [72] and Google Drawings [46]
were used to make �gures and diagrams.

For collaboration, backup and version control of both code and LATEX�les, Subversion
[36] was used.

1.6 Structure of thesis

Chapter 2: Background and Problem Description This chapter �rst explains
the DPG 2.1 and its main components, as well as the concept of presentation pat-
terns. Lastly, the problem description of the thesis is presented.

Chapter 3: Evaluation of DPG's plugin architecture and entity list han-

dling

This chapter presents the current plugin architecture, as well as an evaluation, with
focus on plugins' role in the presentation pattern. The discovered weaknesses are
presented, and serve as the basis of chapter 4.

Chapter 4: Improvements of DPG's plugin architecture

This chapter discusses proposed improvements of the plugin architecture weaknesses
discovered in chapter 3. The �nal plugin architecture implementations are also pre-
sented here.

Chapter 5: Proposed solutions for plugin resource management in DPG

This chapter presents and discusses the current architecture of the plugin resource

18

1.6. Structure of thesis

solution of DPG. Goals for a new architectural solution are presented, and proposed
solutions are evaluated on the basis of these goals.

Chapter 6: Evaluation of data models and persistence technologies for

plugin resources in DPG

There are multiple models and technologies for persistent storage of data. This
chapter evaluates the most popular data models and technologies supporting them.
The focus of the evaluation is on their applications as solutions for DPG plugin
resources. Goals for the technologies are therefore presented, and the technologies
are �nally evaluated on the basis of these goals.

Chapter 7: Implementing new plugin resource management in DPG

This chapter presents the implementation based on the conclusion of the evaluations
in chapter 5 and 6. The implementation choices are presented and thoroughly ex-
plained throughout the chapter. Finally, a conclusion is presented, evaluating the
ful�llment of the goals and comparing the new implementation with the old one.

Chapter 8: Evaluation, Experiences, further development and conclusion

The last chapter presents the evaluation of the goals the candidate set for this thesis.
Experiences with both development methodologies and technologies are presented, as
well as suggestions for further development based on discovered weaknesses through-
out the development. Finally, a conclusion for the thesis is given.

Appendix A : Guidelines for using the new plugin resource interface

The appendix contains guidelines for plugin developers using the new plugin resource
presented in chapter 7. This includes conventions, examples, references and general
hints for managing plugin resources.

19

20

2
Background and Problem Description

2.1 Web Content Management System

A Content Management System (CMS) is a system for managing content e�ectively.
Content can be anything from simple text to multimedia like images or videos. Its
main functions are to control data access and structure the data in a central storage.

A Web Content Management System is a CMS which focuses on the publishing of
content on a web page. This typically includes web-based administration tools to
allow users to publish or manage content on a web site, without the knowledge of
programming languages or HTML. Examples of popular web CMS are Joomla! [6],
Drupal [1] and Wordpress [14]. There also exists web CMS tailored for more speci�c
applications, such as the educational course management system Moodle [10].

2.2 Presentation Patterns

In 2003, Khalid A. Mughal introduced the concept of presentation patterns [75]. The
concept promotes reuse of content by de�ning how it should be structured, rendered
and navigated. This concept has since been implemented and further developed to
the current version used in DPG 2.1.

21

Chapter 2. Background and Problem Description

2.2.1 Presentation Pattern Speci�cation

A presentation pattern speci�cation is a set of rules for how a presentation pattern
should be structured syntactically. It speci�es how elements can be placed and which
values these elements can contain in a presentation pattern.

2.2.2 Presentation patterns and presentations

A presentation pattern is developed from the presentation pattern speci�cation, and
de�nes the data structure of the content in a presentation. Multiple presentations

can be instantiated from a single presentation pattern, which promotes the reuse of
content structure. An example of this is how DPG 2.1 is used for distant learning
at the Department of Informatics, UiB. Figure 2.1 shows how presentations for each
available course are based on a single course pattern.

Presentation pattern specification

Course Pattern

INF100F INF101F

«instance»

<<made using>>

Figure 2.1: INF100F and INF101F are presentations which are instances of the same
course pattern.

Content, such as the syllabus for a course, can be presented in multiple ways and
places. To achieve this, a presentation uses Cascading Style Sheets (CSS) [19], Ve-

22

2.2. Presentation Patterns

locity Templates [37] and Extensible Stylesheet Transformations (XSLT) [113].

2.2.3 The structure of a presentation pattern

The current version of the presentation pattern speci�cation speci�es four main com-
ponents: entity, entity-instance, view and page. The relationship between these com-
ponents are presented in �gure 2.2. This structure promotes reuse of both content
and its presentation.

Entity Entity-instance View Page

Field Type

0..*1 0..*1 0..*1..*

1

0..*

0..* 1

0..*

0..*

Figure 2.2: The relationships between the components de�ned by the presentation
pattern speci�cation.

An entity de�nes the actual structure of data. Speci�cally, it contains a list of �elds
attributed with speci�c types. There is a composition relationship between �elds and
entities, meaning that each �eld is de�ned, and exists, only in an entity. An entity
containing contact information, may contain the �elds name, address and email.
In DPG 2.1, each �eld type speci�es which �eld plugin should handle the content
contained in the �eld. The �elds in the contact entity would naturally be of the type
string, which means the string plugin would handle their presentation.

The actual content is mapped to an entity-instance, which is an instance of an entity.
Multiple entity instances can be made from the same entity, meaning they each
contain their own content, but the content is structured in the same way.

A view speci�es how an entity-instance will be presented. An entity-instance can be
mapped to multiple views, meaning the content can be presented in multiple ways
without a�ecting the content and its structure. Speci�cally in DPG, a view maps an
entity-instance to an XSLT �le.

A page is a composition of views which are to be presented on a web page. A page-

template is used to structure the views on the page. A view can be mapped to

23

Chapter 2. Background and Problem Description

multiple pages.

In DPG, each pattern is de�ned in its own pattern.xml con�guration �le, using
Extensible Markup Language (XML) [111]. This will be presented in more detail in
chapter 3.

2.3 Dynamic Presentation Generator

Dynamic Presentation Generator (DPG) is a web CMS developed by the JAFU
project. DPG is built around the concept of presentation patterns, and is at version
2.1 at the time of this thesis.

DPG follows the Model-View-Controller (MVC) [42] software architecture pattern.
This pattern isolates domain logic from the presentation, supporting modularity and
separation of concerns [120] of the components. DPG is built on Spring framework
[104] components, such as Spring MVC [103] and Spring Security [105]. Some features
that Spring can provide are an Inversion of Control (IoC) container and facilities for
data access, messaging, testing, secure authentication and authorization.

Currently, DPG uses either JackRabbit [32] or a simple �le system structure for
storing and retrieving persistent content. This solution will be discussed further in
sections 5.1 and 6.1.

DPG 2.1 is made up of four main components:

� Lobby

� Presentation Manager (PM)

� Presentation Content Editor (PCE)

� Presentation Viewer (PV)

These components will be further explained in the following subsections.

2.3.1 Lobby

Lobby is a subsystem of DPG which handles the authentication and authorization of
users. This is where the users log in and get access to the three other components of
DPG, depending on their user roles. Currently, the lobby uses a system called We-

bucator for administration of users and their roles, which was developed in Kristian
Løvik's Master thesis [65].

24

2.4. Problem Description

The user roles are split into three categories:

� Reader Gets access to the PV, which means it can see the web pages and the
presented content in authorized presentations

� Publisher Gets access to the PV, as well as the PCE, meaning it can both
publish, edit and view content of authorized presentations

� Admin Gets full access to all the DPG components. This means it can do the
same as a publisher and a reader, but can also create or delete presentations

The lobby also includes a dashboard for DPG, which presents DPG status informa-
tion and options for reloading �eld plugins at runtime, and clearing caches.

2.3.2 Presentation Viewer (PV)

The PV handles the rendering of presentation content. It transforms the content
into presentable HTML using XSLT, Velocity page templates and CSS. This HTML
content is then presented to anyone with a reader role or higher.

2.3.3 Presentation Content Editor (PCE)

The PCE handles the actual content of a presentation. It also provides a publisher
or admin with an interface for publishing or editing the content through an intuitive
web interface.

2.3.4 Presentation Manager (PM)

The PM handles the creation, con�guration and deletion of presentations based on
presentation patterns. It also provides a web interface for these operations for users
with an admin role.

2.4 Problem Description

The candidate will evaluate the current plugin architecture of DPG and determine
the potential weaknesses and problems associated with it. The candidate will then
evaluate the current solution for handling plugin resources in DPG. Following this will

25

Chapter 2. Background and Problem Description

be an investigation of possible technologies and solutions for these problems. Finally,
an implementation based on the conclusions of the evaluations will be presented in
the thesis.

2.4.1 The plugin architecture of DPG

The web is continuing its development toward information sharing and collaboration,
as well as a user centered design, as de�ned by the Web 2.0 standard [86]. Examples
of this include social media, tag clouds, wikis and search suggestions, which all are
based on user input. In DPG, this user input is handled by plugins.

The new, plugin oriented version of DPG has not matured much after Peder Skei-
dsvoll [94] and Tobias Olsen's [78] Master theses were presented. After DPG reached
version 2.1, it has been very centered around the plugin architecture. It is therefore
natural for the candidate to evaluate the current solution and improve it to facilitate
for new and complex functionality.

2.4.2 Resource management in DPG's plugin architecture

To extend the practical uses of DPG, the development of DPG has tilted towards
giving it e�ective support for large amounts of end-user data and migration of data
with other systems. This new focus was sparked by discussions at the University
of Bergen with OpenX Data [79], an mHealth-system [109] where large amounts
of data is collected with the use of XForms [112]. OpenX Data collects this data
via mobile phones, and is mainly used within the areas of health and education.
The vision for JAFU and DPG is to support collection of this data and use the
power of DPG to create innovative presentations. This will be especially useful with
the current increase in smart phones, tablets and other portable electronic media
devices. This functionality was partially realized in Morten Høiland [52] and Øystein
Rolland's [91] Master theses, where they implemented XForms [112] support in DPG.
Unfortunately, this is a very speci�c solution, which does not solve the general need
for a better resource management for plugin data in DPG.

The DPG itself has gone through a lot of changes in the way it handles resources.
The current persistence solution was mainly developed by Karianne Berg [17] in her
Master thesis in 2008. Since then, some minor changes have taken place, such as
the addition of a plugin resource API which is nothing more than a wrapper of the
general resource API in DPG.

With the development of the plugin architecture arose a new challenge; how should

26

2.4. Problem Description

DPG handle plugin resources and persist them? Resource management for plugins
was not a big priority when the plugin architecture was developed in DPG 2.1. The
plugins of DPG all have access to the same resources, and there is no structure
de�ned. There is also no functionality for data integrity and concurrency control, or
performance functionality such as caching. Providing a generic and powerful solution
for this functionality is a challenge for this thesis.

Plugin persistence API

Implementing a suitable plugin API for handling and persisting plugin resources will
be very important for the future goals of DPG. It is therefore important that new
possible solutions are thoroughly evaluated, by looking at the history of DPG and
other similar CMS.

A choice must be made to either extend the current API, or replace it completely and
sacri�ce backwards compatibility. The candidate will evaluate the current solution
for resource management for plugins in DPG. Alternatives for improvements and
new solutions will be evaluated and presented.

Technologies for persisting large amounts of end-user data

Potential technologies for persisting large amounts of end-user data in DPG should
be thoroughly evaluated. Criteria such as documentation, popularity, ease of use
and functionality is important, since this will most likely be used by many di�erent
developers in the future. The query language, data structure, API and performance
should all be included in the evaluation.

Guidelines for the new solution

The future development of DPG will likely revolve around plugin development. It is
therefore important to provide guidelines for using the new plugin resource solution.
These guidelines should be included in the thesis, to demonstrate the use of the new
solution.

27

28

3
Evaluation of DPG's plugin architecture and

entity list handling

This chapter will discuss and evaluate the plugin architecture of DPG 2.1. First
the architecture and its evolution will be presented, followed by an evaluation of the
plugin architecture.

This chapter contains work done in collaboration with Aleksander Waage [114],
though it was written separately. Both Aleksander Waage and the candidate had a
direct bene�t of improving the plugin architecture, so it was natural to collaborate
in the evaluation of the current plugin architecture.

3.1 The plugin architecture of DPG

The plugin architecture of DPG was �rst developed by Bjørn Ove Ingvaldsen dur-
ing his Master thesis, with the goal of giving DPG multimedia support [60]. This
architecture has since then been a focus of multiple Master students, being further
developed in DPG 2.1 by Tobias Olsen [78] and Peder Skeidsvoll [94]. The architec-
ture has then been used by Morten Høiland [52] and Øystein Rolland [91] in their
development of support for XForms [112] in DPG.

The architecture is based on Martin Fowler's design pattern [42], Plugin, which in-

29

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

corporates principles such as the Open-Closed Principle [66]. Figure 3.1 shows how
following this pattern means that plugins and the host application are connected
through an implemented interface, which lets them provide each other with expected
functionality. A plugin developer therefore does not need much knowledge of how
DPG works, but only needs to relate to these interfaces. This means that following
the Open-Closed Principle is important, which states that modifying the existing
methods of an interface should always be avoided, as this can break plugin func-
tionality. The more plugin functionality is implemented, the more important this
will be, because a change in the interface will require a change in all the plugins
implementing it.

Host System

Plugin
Plugin

Manager Plugin
Interface

Host services
interface

Figure 3.1: Example of an architecture following the Plugin pattern.

3.1.1 The Plugin Interface

To make a plugin in DPG 2.0, one of two interfaces had to be implemented; either
SingleFieldInputPlugin or EntityListInputPlugin. This was changed in
DPG 2.1, where the two interfaces were merged because of large overlaps in function-
ality, and resulted in the FieldPlugin interface. This also changed the possibility
for a plugin to handle multiple �elds at the same time. This change will be discussed
further in section 3.2.

Given the increased role plugins play in DPG 2.1, changing or removing the interface
will break large parts of DPG. This is discussed further in subsection 3.1.4.

The plugins are given functionality from DPG through an interface, with the goal of
making them loosely coupled. The FieldPlugin interface includes these methods:

� generateElement(), which lets the plugin generate the output for the �nal
presentation in HTML, returning it as a JDOM [5] Element.

30

3.1. The plugin architecture of DPG

� getFormElement(), which lets the plugin generate the form element to be
presented in the PCE

� getParameters(), giving the plugin a list of parameters, speci�ed in the
con�guration �le plugin-config.xml.

� setPluginResourceDao(), giving the plugin functionality for saving and
fetching resources

� getXmlContent(), which lets the plugin manipulate the input from the form
element before it is persisted

As can be seen from the interface, the plugins get the responsibility to handle their
own entity �elds in both the PCE and the PV.

3.1.2 Making a plugin

Currently, to implement a plugin, there are multiple ways of de�ning it:

� Specify the name, plugin and parameters in DPG's con�guration �le
pluginConfig.xml

� Specify the name of the plugin with the Java annotation @PluginName as
shown in listing 3.1

� Just have the plugin implement the plugin interface, and let DPG derive the
name of the plugin from DPG's class path

If no annotation is found, the name of the plugin will be the name of the class itself,
given the class implements the FieldPlugin interface. Currently, the only way to
de�ne parameters for a plugin is through the con�guration �le pluginConfig.xml.

Listing 3.1: Plugins de�ned by implementing FieldPlugin and setting plugin name in
an annotation.

1

2 @PluginName("xhtml")
3 public class XHTMLPlugin implements FieldPlugin {
4 ...

The plugins de�ned in any of these ways will then be loaded into the plugin manager
using a ClasspathPluginLoader bean, which implements the PluginLoader
interface. Plugins can also be loaded from JAR �les from the folder lib/plugins,
using the JarPluginLoader class which also implements the PluginLoader in-
terface.

31

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

As previously mentioned, a plugin must implement the FieldPlugin interface,
which includes many methods that most plugins probably will not use. Most plugin
developers therefore choose to extend the AbstractFieldPlugin class, which
provides a default implementation of all methods in a generic way, except for the
generateElement() method. This makes plugin development a lot easier for
most developers.

3.1.3 The Plugin Manager

The main functionality of the plugin manager is implemented in a method called
changeTreeIfPluginIsRequired(), as shown in �gure 3.2. In this method,
the plugin manager handles each �eld in a content document, sending the content of
the �elds to each corresponding plugin through the generateElement() method.
The input for the plugin manager is pure content generated by the PCE. The plugin
manager recursively goes through each and every entity �eld in the content document,
sending the �eld to the right plugin, which in turn transforms the content of the
�eld to presentable content ready for a browser. The transformed document is then
returned and sent back up to the PV, ready to be used in the XSLT transformations.

3.1.4 Entity Field Types

The changes from DPG 2.0 to 2.1 were mostly concerning how DPG handles plugins.
In DPG 2.0, simple types like string were handled by DPG, and plugins were
mostly used for multimedia. Listing 3.2 shows how the type parameter had to be set
to the value plugin and refer to the plugin through the parameter pluginConfig.

Listing 3.2: Plugins in DPG 2.0 were explicitly referred to with the pluginCon�g
attribute.

1 ...
2 <field type="plugin" pluginConfig="singleVideo">video</field>
3 ...

In the development of DPG 2.1, it was decided that the entity �elds should be handled
in a more uniform way [78]. Plugins now play a much larger role in DPG, as every
entity �eld node refers to a plugin speci�ed by the type parameter. This change
means that simple types like string, and even special types like list, are handled
by a plugin with the corresponding name as shown in listing 3.3. Plugins now play
such a sentral role in DPG, that if they are removed, DPG's core functionality would
not work.

32

3.1. The plugin architecture of DPG

FieldPluginManager FieldPluginPresentationViewer ServiceImpl

handleAllElements

changeTreeIfPluginIsRequired

handlePlugin

generateElement

executePlugin

handleAllElements

Element

Document tree

Loop

[for all
fields in an
 entity]

build FieldPluginBean

Figure 3.2: The plugin manager of DPG 2.1 uses plugins to build the presentation
document one �eld element at a time.

Listing 3.3: The type attribute always refers to a plugin in DPG 2.1.

1 ...
2 <field type="string">address</field>
3 <field type="string">name</field>
4 <field type="list" entity-id="url">urls</field>
5 ...

33

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

3.2 Weaknesses of the current plugin architecture

To test the possibility of presenting dynamic geographic data using DPG, the can-
didates implemented a Google Maps [45] plugin. During the implementation, the
candidates encountered some problems which led to the discovery of some clear
weaknesses of the current plugin architecture. This also triggered a more thorough
investigation of the limitations of the current plugin architecture and DPG.

The dynamic Google Map plugin will be used as an example to show some of the
weaknesses presented in this section.

3.2.1 Multiple Field Input Plugins

As previously stated in subsection 3.1.1, the plugins in DPG 2.1 can no longer handle
multiple �elds at one time. An example of when this becomes a problem, is when a
plugin wants to generate JavaScript [119] code, creating objects with multiple �elds.

The candidates were making a Google Map plugin, called DynamicMapPlugin.
The plugin featured a dynamic Google Map with markers loaded from the PCE,
in contrast to the existing map plugin which featured a static google map with
a position stored in the URL. The JavaScript code dynamically generated by this
plugin would make markers and place them on a Google Map. The markers would
contain multiple �elds, including at a minimum:

� the name of the marker

� the latitude

� the longitude

The map itself would contain a list of these markers.

The goal of the plugin was for the pattern designer to know as little as possible about
how the map plugin works. The problems arose when it was attempted to make the
plugin generate all of the JavaScript code needed. This was desired to avoid the need
for a pattern designer to prepare JavaScript code in the XSLT documents and make
markers with the raw content from the PCE. This was not possible, because each plu-
gin only gets access to one entity �eld at a time, through the generateElement()
method in the FieldPlugin interface. A compromise would be to let the plugin
persist the markers as resources belonging to the plugin, but then a publisher would
not be able to add markers through the PCE.

The solution for this problem is discussed in subsection 4.1.4.

34

3.2. Weaknesses of the current plugin architecture

3.2.2 Handling multiple entity instances in one view

Entity-instances and views have a one-to-many relationship, meaning only one entity-
instance can be mapped to a view. Views are de�ned in the DPG pattern.xml
�le, and are used to map the correct content to an XSLT �le. Seeing as the plugin
manager currently only handles one entity-instance at a time, this relationship is in
a sense also true for entity-instances and plugins. In the DPG, each entity-instance
has its content contained in a single document. This single document is the input
for the plugin manager. The plugin manager will currently only be able to give a
plugin the content from a single entity-instance. For most cases, this is �ne, but to
illustrate the issue, an example will be presented.

The previously mentioned dynamic Google Map plugin will be used as an example.
The maps are represented in content as collections of markers. These maps will
each be represented as their own entity instance. Figure 3.3 shows an example with
one entity-instance called Bars and one called Restaurants, each storing di�erent
markers on di�erent maps. Now lets say a pattern designer would like to also combine
these two types of markers and present them on one map. This will not be possible in
the current presentation pattern or system of DPG, because multiple entity-instances
can not be mapped to a single view. The solution for this problem is discussed in
section 4.2.

MarkerEntity

BarMarker
EntityInstance

Restaurant
MarkerEntity

Instance

VV V

Figure 3.3: Multiple entity-instances mapped to one view.

35

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

3.2.3 Lists and subentities

While the candidates were developing DPG, it was very unclear how lists of entities
were handled. Making a list of entities in the DPG can be done by setting the type
attribute to list and referring to another entity through the entity-id attribute
as shown in line 12 of listing 3.4.

Listing 3.4: Example of how a list is de�ned in the presentation pattern.

1

2 <entities>
3

4 <entity id="url">
5 <field type="string">address</field>
6 <field type="string">name</field>
7 </entity>
8

9 <entity id="softwareEntity">
10 <field type="string" required="true">title</field>
11 <field type="xhtml">description</field>
12 <field type="list" entity-id="url">urls</field>
13 <field type="entity" entity-id="phoneEntity">phone</field>
14 <field type="form2">form2</field>
15 <field type="savedComment2">savedComment2</field>
16 </entity>
17

18 </entities>

The plugin manager will see the reference to list, and send the underlying nodes to
the List plugin. The List plugin will then just return the nodes back to the plugin
manager. This was a bit confusing at �rst, as there was absolutely no documentation
on how this actually worked, neither in the DPG Javadoc, wiki or the relevant Master
theses.

Debugging and attempts of further development of DPG gradually revealed the me-
chanics. The handling of lists and sub-entities (which both behave and are treated
in a similar way) is seen throughout multiple parts of DPG, including both the PCE,
PM and PV. This very speci�c handling of lists and sub-entities in the di�erent parts
of DPG make it hard to change the plugin architecture or the plugins handling these
cases. The bene�t of a decoupled architecture is no longer there, when a change in
a plugin can break other parts of the system. The process of DPG handling lists is
presented below.

Figure 3.4 shows how an instance of the ContentDocumentBuilder class builds
the content documents whenever a presentation is created. The method generate()
�rst creates a root element for the document, then calls the processEntityField()

36

3.2. Weaknesses of the current plugin architecture

method, which recursively processes all entities and their �elds in the document. The
list nodes are prepared, but not populated by any child dummy nodes.

ContentDocumentBuilder

generate

Loop

[for each
child of
Root node]

Loop

[for each
sub entity
node]

Presentation Content Document

processEntityField

Alt
[entity != list]

make entity node

processEntityField

create root element

Figure 3.4: When a new presentation is made from a pattern, the
ContentDocumentBuilder in DPG 2.1 builds the content documents for the
presentation.

Figure 3.5 shows how a FormBuilder object builds the forms to be presented to
the publisher in the PCE. The entities are resolved from the content document,
and special cases are made for list entities because of their generated identi�er.
The resolving of entities involves checking the second to last element of an entity's
entityPath parameter in case the entity is contained in a list.

37

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

EditContentFormController FormBuilder

request

createForm

Form

html

EntityPathResolver

resolveEntity

Entity

FieldPlugin

getFormElement

FormElement

Loop

[for all
fields in an
 entity]

Check last two elements in path

Figure 3.5: The FormBuilder class in DPG 2.1 builds the forms to be presented
in the PCE.

Finally, a FormProcessor object checks if the publisher's action was to add or
edit an entity, as shown in listing 3.5. Figure 3.6 shows how the action of adding an
entity through the PCE will add empty lists to the corresponding content document.

Listing 3.5: The conditions of the add or edit entity action in the FormProcessor.

1

2 case EDIT:
3 documentEditor.updateEntityContent(doc, form);
4 break;
5 case ADD:
6 documentEditor.addSubEntity(doc, form);
7 break;

When it is time to present the content from these lists, the FieldPluginManager
bean sends it to the loaded ListPlugin object. This plugin only returns the

38

3.2. Weaknesses of the current plugin architecture

element, letting the FieldPluginManager bean continue down the sub-tree, han-
dling this as it would handle any other entity. This means that subtle changes to the
FieldPluginManager class can easily break the list functionality, and it would be
hard for anyone to tell why, because a lot of the list handling is not easily apparent
throughout DPG. The conclusion is that lists and sub-entities are plugins in DPG,
but are speci�cally referenced in the DPG core components, which goes against the
Plugin design pattern. A modi�cation of the FieldPlugin interface can therefore
break core components of DPG.

The DPG would de�nitely bene�t from a more general way of handling lists and
sub-entities. This would help clean up the code for future development, and open
for larger changes in the DPG, but is in itself a very large change which should be a
topic for a new project.

39

Chapter 3. Evaluation of DPG's plugin architecture and entity list handling

EditContentSubmitController

request

FormProcessor

processForm

DocumentEditor

updateEntityContent

addSubEntity

makeXmlForEachFormElement

ContentDao

saveOrUpdate

success page

makeXmlForEachFormElement

addEmptyLists

Alt

[entityAction == EDIT]

[entityAction == ADD]

Figure 3.6: The FormProcessor class in DPG 2.1 updates the content documents
based on input from the PCE.

40

4
Improvements of DPG's plugin architecture

This chapter presents work done in collaboration with Aleksander Waage [114],
though it was written separately. Both Aleksander Waage and the candidate had a
direct bene�t of improving the plugin architecture, so it was natural to collaborate
in the evaluation of the current plugin architecture.

This chapter will present some solutions to the weaknesses of the current plugin
architecture described in section 3.2. The dynamic map plugin presented in section
3.2 will be used as an example for the solutions in this chapter. Pros and cons for each
solution will be discussed, leading up to the �nal chosen solution and implementation.

An important part of DPG lies in the layers of abstraction between pattern de-
velopers, plugin developers, DPG developers and presentation administrators. The
development of DPG has always been towards more general and simpler solutions,
and the candidates would like to continue this practice.

Since DPG 2.1 multiple plugins have been developed, and in addition play a much
larger role in DPG. A backwards compatible solution is therefore preferred, unless
there is a very important change requiring otherwise.

41

Chapter 4. Improvements of DPG's plugin architecture

The main goals of the solution will be:

� Abstraction

� Simplicity

� Generality

� Backwards compatibility

These goals should apply for all parts of DPG, meaning the solutions should be
advantageous for all developers and users of DPG.

Martin Fowler's best practices [42] have been used throughout the previous devel-
opment of DPG, and are therefore a guideline for the candidates throughout the
solutions and implementations in this thesis.

4.1 Multiple �eld plugins

This section will discuss proposed solutions for the weakness presented in subsection
3.2.1.

4.1.1 Revert to a similar solution to DPG 2.0

As mentioned in subsection 3.1.1, in DPG 2.0, a plugin could implement one of
two interfaces: EntityListInputPlugin or SingleFieldInputPlugin. The
plugin manager would handle these two types of plugins in di�erent steps. A variation
of this solution is backwards compatible with DPG 2.1, as it is not necessary to change
anything about the current plugin interface or how they work.

This solution was considered by Tobias Olsen [78] and Peder Skeidsvoll [94], but was
dismissed because of the apparent similarities and overlapping functionalities of the
two interfaces. Instead they merged the two interfaces into one, but unfortunately
left out some functionality from the EntityListInputPlugin interface, as they
did not see the need for it at the time.

A solution could be to use interface inheritance to let both plugin interfaces inherit
the overlapping functionality. A problem with this solution is that it also means
that a pattern designer would need to know the exact pattern structure the plugin
requires. This goes against our goal of abstraction between the di�erent kinds of
DPG developers. The solution in DPG 2.0 was also speci�c for entity lists, which
goes against the goal of a general solution.

42

4.1. Multiple �eld plugins

4.1.2 Extend the existing FieldPlugin interface

A solution that was considered was to extend the existing FieldPlugin interface
to allow for multiple �elds. While investigating the possibility, the candidates found
the current interface actually supports this. The generateElement() method
has a JDOM Element object as input. This Element object can contain child
elements, meaning it can support multiple �elds. The change would have to be in
how the plugin manager handles these elements in DPG, and how the �elds refer to
plugins. This solution is backwards compatible with plugins from DPG 2.1, because
single �eld plugins could easily be treated similarly.

4.1.3 Refer to a plugin with a new attribute in the pattern

Another solution would be to have a reference to a plugin in the list and the
sub-entity entity �elds. By adding a plugin-ref attribute to these �elds, the
FieldPluginManager bean would be able to know when to send the underlying
content to the referred plugin. This solution would be relatively simple to implement,
but would unfortunately only give the plugin access to lists and sub-entities.

Listing 4.1 shows a more general solution; referring to a plugin in an entity. A plugin
could then be given access to multiple �elds of any type, including sub-entities and
lists.

Listing 4.1: Example of how the pattern would look with a plugin reference in the
entity.

1 ...
2 <entity id="map" plugin-ref="dynamicMapPlugin">
3 <field type="string" required="true">name</field>
4 ...
5 </entity>
6 ...

Unfortunately, both solutions do not solve the problem of the pattern designer requir-
ing knowledge of how to structure these entities according to the plugin requirements.

4.1.4 Plugin de�ned pattern structure

A problem with plugins requiring multiple �elds is that the entities and �elds are
de�ned in the �le pattern.xml by the pattern designer. This means that the
pattern designer had to know plugin speci�c requirements of the entity structure
in the patterns, and the plugin developer is dependent on the pattern designer to

43

Chapter 4. Improvements of DPG's plugin architecture

follow these requirements. This breaks the layer of abstraction between the plugin
developer and the pattern designer. Listing 4.2 shows an example of how a pattern
designer would need to structure the pattern according to the plugin's requirements.

Listing 4.2: Example of how a pattern designer would need to de�ne the plugin
required structure.

1 <specification>
2 <entities>
3 <entity id="marker">
4 <field type="String" required="true">name</field>
5 <field type="String" required="true">longitude</field>
6 <field type="String" required="true">latitude</field>
7 </entity>
8 <entity id="dynamicMap">
9 <field type="list">marker</field>

10 </entity>
11 ...
12 </entities>
13 ...
14 </specification>

A solution to this problem is to let plugins de�ne their own entities in the pattern
structure. The plugin would then be guaranteed to receive the correct entities.
The pattern developer would also see the bene�t of this, as it would no longer be
necessary to have any knowledge of the inner workings of the plugin. Listing 4.3
shows an example of how the pattern would look. Pattern developers only need to
refer to the plugin through a single �eld.

Listing 4.3: Example of how the pattern would look after the solution of a plugin
de�ned structure.

1 <entities>
2 <entity id="dynamicMap">
3 <field type="dynamicMapPlugin">map</field>
4 </entity>
5 ...
6 </entities>
7 ...
8 </specification>

4.1.5 Final solution and implementation

The �nal solution the candidates decided to implement lets a plugin de�ne its own
pattern structure, as explained in subsection 4.1.4.

The implementation is relatively complex compared to the other suggested solutions,

44

4.1. Multiple �eld plugins

as this requires changes throughout many components of DPG. This is very time
consuming, as it requires detailed knowledge of how these components work. There
was little to no documentation, and no one available with the knowledge to help the
candidates. Despite this, the solution was chosen based on its powerful functionality,
general form and provided level of abstraction. Backwards compatibility is also a
huge bonus. The many advantages of this solution made the extra e�ort well worth
undertaking.

A goal of the implementation was to ensure that nested solutions also work. This
means that a plugin can use another plugin, and even use another plugin that gen-
erates its own pattern structure.

Super�cial changes to DPG

For a pattern designer, the pattern will look the same as in DPG 2.1. If a �eld refers
to a plugin generating its own content, this will show up in the PCE and entity
content document, but will be invisible to the pattern designer.

As seen in listing 4.3, the pattern designer does not need any knowledge of how the
plugin works. The pattern designer only needs to make a single �eld referring to the
plugin, and the plugin does the rest.

Figure 4.1 shows how, despite the pattern only de�ning one �eld, all the required
�elds of the plugin show up in the PCE. The content document is generated as it
would be if these plugin de�ned entities existed in the pattern.

Finally, �gure 4.2 shows how the entities are correctly presented. Everything is
generated by the plugin; the pattern designer only selects the document node in the
XSLT as it would with any other entity and entity-�eld.

45

Chapter 4. Improvements of DPG's plugin architecture

Figure 4.1: Entities generated by the plugin DynamicMapPlugin shown in the
PCE.

46

4.1. Multiple �eld plugins

Figure 4.2: Map generated by the plugin DynamicMapPlugin with input from the
PCE.

47

Chapter 4. Improvements of DPG's plugin architecture

Changes to the plugin interface

To support backwards compatibility, and retain the uniform way of handling plugins
and entity �elds in DPG, it was decided to try a solution which only required an
extension of the current interface, following the Open-Closed principle. The method
generatePatternStructure() was added to the FieldPlugin interface as
shown in listing 4.4. DPG now expects this method to generate a list of JDOM
Element objects de�ning a pattern substructure. If this method returns null, the
plugin and corresponding �eld will be handled as a DPG 2.1 FieldPlugin. The
abstract class AbstractFieldPlugin that most plugins extend, automatically
returns null, so that plugins that don't require multiple �elds do not need to worry
about this.

Listing 4.4: The generatePatternStructure() method is added to the FieldPlugin
interface. The semantics of the other methods are explained in section 3.1.1.

1

2 interface FieldPlugin {
3

4 Element generateElement(FieldPluginBean, Map<String, Object>);
5

6 List<String> getParameters();
7

8 FormElement getFormElement(String, Field);
9

10 Content getXmlContent(FormElement, PluginContext);
11

12 void setPluginResourceDao(PluginResourceDao);
13

14 /**
15 * Generate the element structure this plugin requires.
16 * If it is a single field input plugin, return null.
17 * @return list of Elements defining the pattern structure for
18 * this plugin.
19 * The first element will be mapped to an entity instance */
20 Element[] generatePatternStructure();
21

22 }

Changes to the DPG architecture

It was decided by the candidates to utilize as much of the existing code and function-
ality in DPG as possible. Intercepting the actions regarding the pattern was tried
as early as possible, meaning the �rst place the candidates looked was as low-level
as the persistence API. The candidates then worked their way up, trying to �nd a
solution.

48

4.1. Multiple �eld plugins

It was not possible to change the pattern management for plugins at the DPG core
and persistence level, because plugins are handled at a higher level. The end result
required changes in both the PCE, PV and PM.

When a presentation is created, DPG �rst builds the content documents' basic struc-
ture, without any actual content. Most of the following actions actually check this
content document's structure, instead of the actual pattern. The �rst change to the
architecture was therefore in the ContentDocumentBuilder class in the PM, as
shown in �gure 4.3. The new ContentDocumentBuilder class checks the pattern
to see how the content document should be built. The implemented change adds a
condition when the �elds of a pattern are resolved; it now also checks if the plugin
from the �eld wants to generate its own pattern structure.

After the presentation is created, the rest of the changes in the content document are
handled by the PCE. The main functionality here lies in the classes FormBuilder
and DocumentEditor (called in the FormProcessor class). The changes required
were only in the FormBuilder, as shown in �gure 4.4. This builds the forms to
be presented to the publisher in the PCE. It checks the entity-path of an entity in
the content document, to resolve the actual entity from the pattern. The change
required was only to intercept this, and add a condition to resolve the entity from
the sub-pattern generated by a plugin if needed. The form is then built using these
entities.

A challenge here was that there can be multiple instances of �elds referring to the
same plugin generating its own pattern structure. An example of this is if two maps
generated by DynamicMapPlugin are made, the plugin would generate the same
name for these entities. This would cause a collision when trying to resolve an entity.
Because of this, there was a need for an extra identi�er for the generated entities.
It was decided to use the same solution as when the DPG generates sub-entities in
lists, adding a unique identi�er number.

Finally, the content is presented in the PV, using the FieldPluginManager bean
to transform content to something presentable in HTML.
The FieldPluginManager bean recursively goes through the content document,
sending the content of each entity-�eld to the correct plugin's generateElement()
method. The changes required here included a condition to check if a plugin generates
its own pattern through the generatePatternStructure()method. The plugin
manager then continues down the tree, letting each �eld in the generated pattern
be processed as normal by the corresponding plugins. When the recursive function
returns to the original plugin, the underlying pre-processed sub-tree will be given
to it through the generateElement() method. This ensures that each plugin,
even the ones referred to in a pattern generated by another plugin, generates its own
element to be presented as normal, avoiding unnecessary duplication of code.

49

Chapter 4. Improvements of DPG's plugin architecture

ContentDocumentBuilder

generate

Loop

[for each
child of
Root node]

Loop

[for each
sub entity
node]

Presentation Content Document

Alt
[entity != list]

make entity node

Alt
[plugin generates
pattern]

processEntityField

processEntityField

FieldPlugin

generatePatternStructure

Element

build FieldPluginBean

Figure 4.3: The new ContentDocumentBuilder class in DPG 2.1 builds the
presentation content document from plugin generated patterns as well.

50

4.1. Multiple �eld plugins

EditContentFormController FormBuilder

handlePluginEntity

request

createForm

Form
html

EntityPathResolver

resolveEntity

Entity

FieldPlugin

getFormElement

FormElement

getEntityFromPluginAlt
[entity == null]

Loop

[for each
entity field]

generatePatternStructure

Element

Figure 4.4: The new FormBuilder class in DPG 2.1 builds the forms to be pre-
sented in the PCE using plugin generated patterns as well.

51

Chapter 4. Improvements of DPG's plugin architecture

4.2 Multiple entity instances in one view

This section will discuss proposed solutions for the weakness presented in subsection
3.2.2.

4.2.1 View composition plugin

A plugin could be made which composes multiple entity-instances into one entity-
instance. DPG would then have to be altered to allow this special case, as is done
with the list and subentity plugin. This solution goes against our goal of
abstraction, and would be a complex implementation.

4.2.2 Single view list

A solution to the single view list problem, explained in subsection 3.2.2, would be to
let a list of entity-instances be mapped to a single view. This would require a change
in the presentation pattern speci�cation, because of the current relationship between
entity-instances and views as explained in subsection 3.2.2. One solution is to refer
to other entity-instances in a new entity-instance, and map this new entity-instance
to the view. This is similar to how a list �eld refers to other entities. Another
solution is to directly map multiple entity-instances to a single view in the pattern.

Implementing this solution for views mapped to XSLTs should be relatively easy, as
the PV can just compose these documents and send the new document to the correct
view. The pattern designer could then treat this information as it likes. For this
to work for plugins receiving multiple �elds through the plugin manager, is a little
more complex. Since the pattern designer has no control here, the plugins and the
plugin manager would need to know which speci�c entities are meant to be presented
together.

This solution should be easy to make backwards compatible with both plugins and
the patterns of DPG 2.1. The current abstraction and generality of DPG 2.1 is also
retained.

4.2.3 Final solution

The chosen solution for the single view list problem is to map multiple entity-
instances to a single view in the pattern. This was a clear choice, as it is a backwards

52

4.2. Multiple entity instances in one view

compatible and general solution which retains the abstraction between the di�erent
components of DPG.

Changes to the presentation pattern speci�cation

The presentation pattern speci�cation is extended to let a list of entity-instances
be mapped to a single view. This is done by mapping multiple entity-instances in
the entity-instance-ref node of the view, separating each entity-instance by
a semi-colon as shown in line 28 in listing 4.5.

Listing 4.5: Example of the new pattern with single view lists.

1

2 ...
3

4 <entity id="markerEntity">
5 <field type="string">name</field>
6 <field type="string" required="true">latitude</field>
7 <field type="string" required="true">longitude</field>
8 </entity>
9

10 <entity id="mapEntity">
11 <field type="list" entity-ref="markerEntity">markers</field>
12 </entity>
13

14 ...
15

16 <entity-instance id="barMarkersInstance">
17 <entity-ref>markersEntity</entity-ref>
18 </entity-instance>
19

20 <entity-instance id="restaurantMarkersInstance">
21 <entity-ref>markersEntity</entity-ref>
22 </entity-instance>
23

24 ...
25

26 <view id="markersView">
27 <description>Bars and Restaurants</description>
28 <entity-instance-ref>barMarkersInstance;restaurantMarkersInstance

</entity-instance-ref>
29 <transformation>barAndRestaurantsTransformer</transformation>
30 </view>

53

Chapter 4. Improvements of DPG's plugin architecture

Changes to the DPG architecture

The changes are mainly in the PV. The PCE should not be changed to let a publisher
manipulate combined entity-instances, because this content should still be separated.
The publisher will still have access to the entity-instances individually, but this means
they currently each have to be mapped to a view. A solution here is to show each
mapped entity-instance separately in the view in the PCE.

The change in the PV starts in the createViewContent() method of the
PresentationViewerServiceImpl class. This is where the mapping of content
from entity-instances to views is handled. This content is sent to the plugin manager
and the document is �nally transformed with XSLT. The composition of entity-
instances happens here, before the content is transformed. This allows for multiple
entity-instances to be transformed in a single view.

Some changes also had to be made to how views are loaded into View objects,
because views can now contain a list of references to entity instances. The root
element of the document sent to the XSLT transformation was the entity instance

which was contained in a view. Since views can now contain multiple entity instances,
the root element of the document is changed to the view. This makes more sense
anyway, because the presentation documents are created for each view. This is an
important change to note for pattern designers, as the XSLTs have to be slightly
modi�ed to use the view name as the root element of the content document.

54

5
Proposed solutions for plugin resource

management in DPG

This chapter will discuss di�erent architectural alternatives for improving the current
plugin resource management in DPG. The conclusion will be presented at the end of
the chapter. Figure 5.1 shows a general architectural overview of the plugin resource
management in DPG. This chapter will discuss the plugin interaction with the DPG
API and architecture, while the underlying persistence technology will be discussed
in chapter 6.

The plugins play a large role in DPG 2.1, as shown in section 3.1. DPG can easily
follow trends and implement new technologies by simply adding functionality through
plugins. With the increasing importance of user interaction on the web, as de�ned
by Web 2.0 [86], the plugins will be even more important to DPG. It is from user
interaction the really large amounts of data are gathered, because there are many
more readers than publishers. This makes improving the current plugin persistence
solution a high priority in DPG.

55

Chapter 5. Proposed solutions for plugin resource management in DPG

Persistence
framework

DPG
Data

Access
API

Plugin A

Plugin B

Persistent storage

Figure 5.1: The overall architecture of the plugin resource management which is the
topic of discussion in chapters 5 and 6.

5.1 Current solution

There are two types of content for plugins in DPG:

� Presentation content, which is given to the plugin through �elds one at a time
from DPG

� Plugin resources, which are fully controlled by the plugin and mostly used for
storing content from readers interacting with the plugin

How DPG structures this content is shown in �gure 5.2. This �gure shows the logical
organization of the content in DPG. The current use of a File System persistence
implementation means the �gure also shows the physical organization of the content.

The entity �elds speci�ed in a presentation pattern each refer to a plugin. The
presentation, which is an instance of the presentation pattern, contains this content.
This is the content that is managed by a publisher through the PCE, and given to the
plugin through the generateElement() method of the FieldPlugin interface
as shown in subsection 3.1.1.

To handle other types of data, such as data given through interactions with a reader,
the plugins get direct access to their own resources. These resources are important
for any type of reader interactions in DPG that require persistent data storage.

All content in DPG is accessed through a layer of Data Access Objects(DAOs), fol-
lowing the DAO design pattern [57]. DAOs provide an abstract interface for accessing
a database or other persistent storage, without exposing details of the database. The

56

5.1. Current solution

Presentations

Presentation
A

Presentation
B

Presentation
C

Content Plugin-resources Content Plugin-resources Content Plugin-resources

Figure 5.2: Tree showing the logical organization of the two types of content in DPG,
PCE content and plugin resources, separated by folders.

implementation of the underlying persistence technology is not important as long as
it is a fully functioning implementation of the DAO interface. This means that
the persistence technology and implementation can be swapped without breaking
the rest of the system. Currently, DPG has two DAO implementations: The File
System DAO, and the JCR DAO, which are discussed further in chapter 6.1.

The current solution for plugin resource management in DPG is very simple. Each
plugin gets access to an implementation of the PluginResourceDao interface
through the setPluginResourceDao() method of the FieldPlugin interface.
The PluginResourceDao interface contains four simple methods, shown in listing
5.1 below.

57

Chapter 5. Proposed solutions for plugin resource management in DPG

Listing 5.1: The current interface for plugin resources.

1

2 public interface PluginResourceDao {
3

4 /**
5 * Save resource
6 * @param presentationId the ID of the presentation to save the

resource in
7 * @param filePath the path to the file, with root in the

presentation folder
8 * @param mimeType the MIME type of the resource
9 * @param resource the resource to be saved

10 * @return URL to saved resource
11 */
12 String saveResource(String presentationId, String filePath, String

mimeType, InputStream resource);
13

14 /**
15 * Get resource from a presentation
16 * @param presentationId the ID of the presentation to get the

resource from
17 * @param resourceId the name of the resource
18 * @param getBinaryContent specifies if the content is binary, such

as images
19 * @return URL to saved resource
20 */
21 ResourceFile getPresentationResourceById(String presentationId,

String resourceId, boolean getBinaryContent);
22

23 /**
24 * Check if a resource exists in a presentation
25 * @param presentationId the ID of the presentation
26 * @param the name of the file/resource
27 * @return true if it exists
28 */
29 boolean resourceExists(String presentationId, String fileName);
30

31 /**
32 * Delete a resource of presentation
33 * @param presentationId the ID of the presentation
34 * @param the name of the file/resource to delete
35 * @return true if it was deleted
36 */
37 boolean deleteResource(String presentationId, String fileName);
38

39 }

These methods give a very basic CRUD [118] functionality; persisting, fetching and
deleting resources. The plugin itself has to structure and manage the data; be it
tabular, hierarchical or binary data. Because of this, plugin developers are forced

58

5.1. Current solution

to do things like structuring data in simple text �les with the data separated by
white-spaces. This also means the plugin has to parse the entire text �le each time
it wants to retrieve some data. Figure 5.3 shows an example of how the poll plugin
of DPG 2.1 structures its resources. When a user submits an answer to the poll, the
plugin manipulates multiple documents: one containing the answer for the current
user, and the rest containing the number of answers for each alternative in the poll.

poll_cake_
No

poll_cake_
Yes

Plugin resources

poll_cake_
username

Figure 5.3: The poll plugin updates three di�erent documents in a yes/no poll.

Depending on the DAO used, it may lack transaction support, so complications may
arise if multiple instances of the same plugin try to manipulate the same resource
concurrently. Other functionality such as caching is also not supported.

Figure 5.4 shows how every resource is tied to a presentation, but not a plugin. The
implementation of the PluginResourceDao interface gives all plugins access to
the same resources. This means that DPG does not do anything to separate the
resources between plugins. Currently, all plugin resources are persisted to the same
folder in the presentation. It is likely that multiple plugins will manipulate the same
resource, because the name of the resource is the only thing that di�erentiates them.

The plugin gets access to the current user's name, view and page through a provided
FieldPluginBean object. This means that the plugin can use DPG's authenti-
cation mechanism to separate content from users, or separate content by views and
pages. The plugin itself would have to structure and separate this content.

59

Chapter 5. Proposed solutions for plugin resource management in DPG

DPG

Plugin A

Plugin B

Plugin C

Plugin
Resources

PluginResource
Dao

Figure 5.4: Plugins get access to resources through the PluginResourceDao in-
terface. The stipled lines show which resources plugins have access to.

5.2 Goals for a new plugin resource solution

The solution has to meet certain criteria to support plugins requiring persistence of
large amounts of structured data:

� Good performance for large amounts of data and concurrent users

� Facilitation of functionality such as caching and transaction support

� Resource authentication for plugins

� Persistence implementation abstraction (portability)

Ful�lling these criteria depends on the architecture and API of DPG, as well as
the data model and technology for persistence. This chapter will focus on how the
architecture of DPG can ful�ll the criteria.

5.3 Proposed solutions

In this section, proposed solutions for the architecture and API for plugin resources
will be presented. These alternatives will then be evaluated in section 5.4.

60

5.3. Proposed solutions

The danger of repeating others' mistakes makes it important to do extensive research
of the history and solutions of other major CMS, such as Joomla [6], Moodle [10],
Drupal [1] and WordPress [14]. This research will be the basis for inspiration of some
of the proposed solutions.

5.3.1 Improvements in the current API

One solution would be to improve and extend the current API provided by the
PluginResourceDao interface and change how the implementation structures and
manages the content. This could be simple �xes such as having DPG give each plugin
their own folder as shown in �gure 5.5.

DPG

Plugin A

Plugin B

Plugin C

Plugin A
Resources

PluginResource
Dao

Plugin B
Resources

Plugin C
Resources

Figure 5.5: Plugins get access to resources through the PluginResourceDao in-
terface. The stipled lines show the plugins' access to resources.

This solution would be completely backwards compatible with current plugins. The
current API is a very general solution, meaning it is easy to implement nearly any
persistence technology as its back-end, because it handles entire documents, not
speci�c data values. It would also be the simplest solution to implement, and retains

61

Chapter 5. Proposed solutions for plugin resource management in DPG

a familiar structure of the resources.

The problem with this solution is it still does not facilitate for functionality such as
structure, transaction and caching support on a low level. It also still restricts the
plugin to some very simple methods of persisting and retrieving data, making it very
ine�cient.

5.3.2 Direct access through a standardized query language

Another solution would be to give the plugin direct access to the persistence tech-
nology. This could mean giving the plugin access to its own tables or folders through
a query language such as XPath [110] or SQL [121], as shown in �gure 5.6.

This solution would give full functionality of the underlying persistence technology,
ful�lling the goals of performance and transaction support depending on the choice
of persistence technology.

DPG

Plugin

Core
tables/
folders

Plugin A
tables/
folders

Save/
retrieve

data

Save/
retrieve

data

Persistent
storage

Figure 5.6: Plugins with direct access to the persistent storage.

Moodle [10] lets plugins de�ne their own tables in the Moodle database. Moodle
provides plugin developers with a tool called XMLDB to generate the XML con�g-
uration �les that specify how Moodle should set up its database tables. Using this

62

5.3. Proposed solutions

tool makes it database-neutral [74]. This requires Moodle to present a long list of
conventions for de�ning these tables and their content. The current plugin-centric
architecture of DPG makes this a less valid solution for DPG, because the plug-
ins would have to be trusted to follow these conventions, so they don't break core
functionality or other plugins' resources.

Joomla is structured in a di�erent way, with what it de�nes as modules and plugins
for extending the system. Joomla's plugins are of little relevance to the discussion
of plugin resources in DPG, because they do not manage any resources, but will be
discussed further in subsection 8.3.1. Plugins responsibility in DPG can be described
as a mix of that of a Joomla module and plugin. Joomla gives modules full access
to the database, with nothing more than some warnings and tips of their use, given
in tutorials on their website [61]. This is the same for WordPress, where plugins can
create and manage their own database tables [124].

Another problem with this solution is that most database management system (DBMS)
vendors have their own SQL dialect. This is often to support special features not
supported in standard SQL. If DPG plugins are initially developed with one DBMS
vendor in mind, it will be hard to change this later. This goes against the goal of
portability. The solution would be to make a tool similar to Moodle's XMLDB, along
with a similar list of conventions, but this would be time consuming and di�cult to
maintain.

DPG would also have to depend on the plugins for security, as this solution can make
DPG vulnerable to attacks, such as a database injection attack, through the plugins.

5.3.3 Indirect access through stored procedures or an API

The last proposed solution would be to give the plugin indirect access to the database
through stored procedures or an API. This is sort of a mix of the solutions presented
in subsections 5.3.1 and 5.3.2. Figure 5.7 shows a solution where all queries to the
persistent storage must go through an API controlled by DPG. Figure 5.8 shows a
similar solution, but where queries go through a persistence framework, which will
further process the queries before they are committed. These solutions provide a
potential for a vendor-agnostic abstraction layer for accessing the database of DPG.

Drupal's extensions are called modules. Modules in Drupal use Drupal's database
abstraction layer for accessing the database. This layer provides functionality for
stored procedures, and �query builders�, which further process queries before they
are committed to the database. This solution has the extra bene�t of security, as all
queries are forcibly passed as prepared statement strings, preventing SQL injection
attacks [87] from succeeding. Prepared statements can also increase performance,

63

Chapter 5. Proposed solutions for plugin resource management in DPG

Persistent
storage

Plugin
Persistence

API
PluginPersistence

framework

Query

Data

Request
Method

call

Return
value

Response
value

Figure 5.7: Plugins with indirect access to a persistence framework through an API.

DPG

Persistent
storage

Plugin

Persistence framework

Query Data

Request Request

Persistence API

Response
value

Response
value

Method
call

Return
value

Core components

Figure 5.8: Plugins with indirect access to persistent storage through a framework.

since the database can execute them without compiling them �rst [85]. Stored pro-
cedures can give access control functionality and be cached in the database to increase
performance. This is an example of how a similar solution would give DPG more
control to increase overall performance and security. This is a win-win situation, as
plugins do not need to focus on low-level performance and security issues, and DPG
does not need to rely on plugins for this.

64

5.4. Evaluation of proposed solutions

5.4 Evaluation of proposed solutions

Table 5.1 shows a comparison matrix of the persistence solutions for plugins in DPG.
Making a very general API which is relatively neutral to a speci�c data model, would
mean sacri�cing functionality. There is a balance to this, where on one end there is
rich functionality and the other end generality and abstraction of data model. This
is because data values need to be stored and organized with some form of speci�c
structure to be able to retrieve it e�ciently. On the other hand, a direct access
solution does not ful�ll the goal of portability of persistence implementation or re-
source authentication for plugins. Many large CMS lock themselves to a speci�c
database vendor, like MySQL, but DPG is designed to be portable across platforms
and technologies. A middle ground would give the best solution ful�lling all goals
while only sacri�cing a slight amount of functionality, performance and portability.
The conclusion is therefore to give the plugin indirect access to the persistent storage
through an API or framework, as described in subsection 5.3.3.

Criteria Improve current Direct access Indirect access

solution

Performance Poor Very good Good

Functionality Poor Very good Good

Resource
authentication Yes No Yes

Portability Very good Bad Good

Table 5.1: Comparison matrix of persistence solutions for plugins in DPG.

65

66

6
Evaluation of data models and persistence

technologies for plugin resources in DPG

This chapter discusses and evaluates di�erent data models and persistence technolo-
gies which can be used for managing plugin resources in DPG. This discussion is on
a persistence implementation level, while the API and how the resources are made
available to plugins is discussed in chapter 5.

6.1 Current data model

Currently, DPG uses a hierarchical data model for persistence. The data is accessed
through DAOs, which function as a layer of abstraction between the persistence
technology and the rest of DPG, as explained in section 5.1. This solution was
developed in DPG 2.0 by Karianne Berg [17].

The �rst implementation of the DAO interface used JackRabbit [32], an implemen-
tation of Java Content Repository (JCR) [62], as shown in �gure 6.1. JackRabbit
o�ered many features, including transaction support, caching, XPath and SQL query
support and being database agnostic. In practice, it proved to be di�cult to admin-
istrate, possibly due to lack of documentation and maturity of the technology. The
performance of the solution was also found to be less than satisfactory, as presented

67

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

DAO
interface

DPG

PM PV

PCE

Core components

Plugins

RDBMS
Java Content

Repository

SQL

Rows

Java
API +
XPath

JCR
nodes

Save/
retrieve

resources

Save/
retrieve

resources

Figure 6.1: The current persistence implementation of DPG using JackRabbit.

in an INF-219 project [63] at the University of Bergen by Kelly Whiteley and Alek-
sander Waage. For this reason, a simple File System DAO was further developed and
used in DPG 2.1 by Haakon Nilsen, the former system administrator and IT manager
at the Department of Informatics at UiB, and the JackRabbit implementation has
not seen any improvement since. JackRabbit and JCR will be discussed further in
subsection 6.3.2.

The File System DAO which is currently being used in DPG 2.1, lacks transaction
support and other functionality which makes it a viable solution for deployment of
DPG on a larger scale. Currently, it has only been used in the JAFU project as
a course management system for the distant learning of the courses INF-100F and
INF-101F at the University of Bergen. Each course had its own presentation in
DPG, based on a course pattern. There was only one active publisher and no reader
interaction on each of these presentations, so there were no real problems with data
concurrency or consistency. There were only 5-20 readers for each presentation, so
performance was also never an issue.

6.2 Criteria for persistence technology

To properly compare and evaluate persistence technologies to be used in DPG, it is
important to de�ne some criteria. The criteria will be presented in this section. The
discussions around the persistence technologies will be focused around these criteria.

68

6.2. Criteria for persistence technology

6.2.1 Uniform solution

It is preferred to have DPG only use one persistence solution for all data. That is,
storing plugin resources and content from the PCE in the same way. This means
that depending on the chosen solution, the current DAOs for persistence in DPG
may have to be changed as well. Regardless, it would still be extremely bene�cial
with an upgraded or completely new persistence implementation for DPG. The rest
of DPG's content should therefore also be taken into consideration when choosing a
solution for plugin resources. This will be discussed further in subsection 8.3.13.

6.2.2 Transaction support

One of the biggest problems with the current use of File System for persistence in
DPG, is the lack of transaction support. Concurrent users writing to the same �le
may corrupt data. Some problems that may occur are:

� Lost updates: multiple processes read a value at approximately the same time,
and then update the value based on the original value.

� Dirty reads: a process updates a value, and another process reads this before it
is committed. An example of this is if an error occurs in a process after a value
is changed, and another process reads the value before it is rolled back [80].

Other errors related to writing data to a persistent storage may also occur. For
example an error such as a hard disk drive crash on the server can occur while data
is being written to a �le, corrupting the data in the �le.

The solution to these problems is to use transactions. Transactions can be described
using ACID [123] criteria:

� Atomicity: if one step fails, the whole transaction is rolled back

� Consistency and Isolation: transactions are isolated from each other, so the
data inside a transaction is consistent

� Durability: even if a server or application crashes, the changes made by a
successful transaction are permanent

A technology supporting transactions is therefore considered a very high priority in
this evaluation of persistence technologies.

69

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

6.2.3 Performance

The downfall of the JackRabbit implementation was largely due to performance
issues. The performance of both the JackRabbit and File System persistence im-
plementation has been poor, and limits DPG's uses. Improving DPG's performance
has not been a priority since DPG 2.0, since so far it has only been used on a very
small scale. This makes performance a very high priority for the new persistence
technology to be used in DPG.

6.2.4 Support for caching

It is safe to assume that under normal use, DPG will execute many more read
operations than write operations. There are a lot more readers than publishers, and
presentations will be presented much more often than they will be changed. To
fetch this data from a persistent storage every single time a reader views a page in
a presentation would be very ine�cient. The presentation does not change, and the
content rarely changes, so in most cases it would be better to hold the page or the
content in memory. This is called caching, and will greatly increase performance
of the application. The persistence technology of DPG should therefore support
caching.

6.2.5 Maturity and documentation

It is important that the solution is mature and well documented. This makes it easier
and more safe to commit to. The maturity and documentation usually re�ects the
popularity of the technology as well. This should be considered a very high priority.

6.2.6 Portability

To avoid vendor lock-in, the framework for accessing the persistent storage or database
should abstract away from vendor-speci�c details. A criteria is that the framework
supports at least two popular open-source databases.

6.2.7 Character encoding of data

In Karianne Berg's Master thesis [17], it was speci�ed that all data in DPG should
use the UTF-8 character encoding for Unicode [59]. This means that the persistence

70

6.2. Criteria for persistence technology

technology has to support this.

6.2.8 Spring integration

DPG uses the Spring framework, which can integrate with persistence solutions to
give extra functionality such as transaction management. To utilize Spring function-
ality to its fullest, the persistence technology should integrate well with the Spring
framework. Many technologies provide a Spring integration module to make this
easier.

6.2.9 Follows a standard

There are many bene�ts to a persistence technology which follows a standard. It
assures that changes will a�ect many di�erent implementations, usually leading to
a more matured and carefully thought out solution. Other implementations of the
standard can also be used for documentation on the technology. Completely relying
on one persistence technology is risky, but using a standard usually means that the
implementation can be changed relatively easily, further promoting portability.

6.2.10 Backwards Compatibility

Backwards compatibility with content from DPG 2.1 is a bene�t. This is considered
a low priority, because it should not be a deciding factor for the choice of persistence
technology. This is because the only current use of DPG 2.1 is tied to the distant
learning of the courses INF-100F and INF-101F, which are not running this semester,
so there will not be much work transfering content to a new version of DPG.

6.2.11 Support for versioning of data

A popular feature which is supported by many persistence technologies today, is
versioning of persistent data. This could allow a plugin or publisher to keep track
of revisions of persistent data, and roll back if needed. This is considered medium

priority, because it will likely have a performance impact because of the increased
processing required for each transaction, having to also store and manage versions of
data. The feature is practical, but not necessary. This idea will be discussed further
in subsection 8.3.9.

71

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

6.3 Alternative persistence technologies

Some data is inherently tabular, while other data can be inherently hierarchical or
even object relational. This section will discuss these di�erent data models, along
with some good frameworks supporting them, with regards to their use in DPG.

The following alternatives will be discussed:

� Relational data model

� Hierarchical data model

� Object-oriented data model

The focus of the evaluation is on the plugin resources and data from user interac-
tions, but DPG's content is structured hierarchically, and this will be taken into
consideration for the further development of a uniform persistence implementation
in DPG.

6.3.1 Relational

The most common structure of large amounts of user input data is tabular as shown
in table 6.1, and this data model by far has the most matured technologies and
solutions. The performance is very high, due to the maturity and the very rigid
schema de�ning the data structure. The rigid schema of the data is also one of
its largest drawbacks. Complex structures, or data which doesn't follow a speci�c
order, may be represented in an unnatural way, forcing a distribution of data over
many tables. This reduces performance and makes the data di�cult to manage.
Performance may also su�er if schemas of data change often, because this would
require a restructuring of the database.

Name Age Address Country

Kelly 24 123 Fake St. USA
Øystein 25 Torgallmenningen 8 Norway
Aleksander 25 Valkendorfsgaten 6 Norway

Table 6.1: Example of tabular data.

Relational databases have a standard query language, SQL [121], for retrieving and
manipulating tabular data. SQL has existed since the 1970's and is a familiar lan-
guage to most software developers. This means that most plugin developers would
not need to learn anything radically new if it were to be used in DPG.

72

6.3. Alternative persistence technologies

For a uniform persistence solution in DPG, the problem of persisting hierarhical
data in a relational database must be discussed. DPG's presentation patterns are
structured in an XML tree, so applying a relational database solution would require
some form of mapping from XML to relational structure. The presentation patterns
support nested entities, making it possible for very complex structures which do not
translate well to a relational structure. There are many good open source frameworks
for mapping between relational and Java objects, and XML and Java objects, but
functionality for mapping XML to relational are lacking and usually speci�c for a
database vendor. Another solution would be to store the XML data in a Large Object
(LOB) or a Character LOB (CLOB), but this would still force DPG to process the
entire XML tree each time a value is needed. The ideal solution would be a relational
database with support for an XML data type, which can be queried.

Plugins in DPG are responsible for handling end-user data; that is, data from a
reader. Most plugins' data from readers is tabular, meaning the relational data
model would in most cases suit the plugins' needs very well, and would provide with
a high performance solution. Examples of some existing plugins with tabular data
are:

� Pollplugin: answers, such as �yes� or �no�, tied to usernames

� DynamicMapPlugin: places with names, latitudes and longitudes

Technologies and solutions supporting the relational model are many, and it is widely
documented. A very low-level and common solution for direct database access
through Java is with the JDBC API [83]. The di�erent SQL dialects of database
vendors means a higher level solution which abstracts the underlying database is pre-
ferred, so as to not lock DPG in to one vendor. It is important that the frameworks
are database vendor agnostic, but most open-source frameworks at least support the
two most popular open-source DBMS; MySQL and PostgreSQL.

Most of the biggest similar CMS like Joomla [6], Drupal [1] and Moodle [10], all
use a relational model for persistence of data. This is a tried and true model, and
would therefore be a safe choice for DPG. On the other hand, DPG's hierarchical
data model may also be one of the key features that separates it from these large
competitors.

MyBatis

MyBatis is a framework for querying a relational database management system (RDBMS)
using SQL, and is in use by large systems such as MySpace. In terms of use, MyBatis

73

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

lies somewhere between JDBC and an Object-Relational mapping tool (ORM) (fur-
ther explained in section 6.3.3). The biggest advantage of MyBatis is in its simplicity,
but it also gives great control over the content of the database itself. It minimizes
boiler plate code from JDBC, and allows for mapping of SQL statements.

MyBatis couples Java objects with stored procedures or SQL statements using an
XML descriptor [11]. A recent addition is support for mapping through Java an-
notations as well, as shown in listing 6.1. Depending on the database, it supports
transaction management and caching.

Listing 6.1: Mapping comments in a relational database to a Java object with anno-
tations.

1

2 public interface CommentMapper {
3 @Select("SELECT * FROM comments WHERE name = #{name}")
4 Comments selectComments(String name);
5 }

As shown in listing 6.2, MyBatis can make it very simple to persist and retrieve data
with Java objects, once the data is mapped. It is important to provide a simple way
for plugins in DPG to manipulate persistent data, but at the same time control it.
One solution is to let plugins map the objects through an API provided by DPG.
DPG can then process this before it is mapped, like splitting the resources by plugins.

Listing 6.2: Retrieving comments made by Kelly using MyBatis.

1 ..
2

3 SqlSession session = sqlSessionFactory.openSession();
4 try {
5 CommentMapper mapper = session.getMapper(CommentMapper.class);
6 Comments comments = mapper.selectComments("Kelly");
7 } finally {
8 session.close();
9 }

10

11 ..

There is little processing and overhead tied to using MyBatis. The performance is
mostly limited to JDBC and the underlying database [115]. This makes for very
good performance. MyBatis also integrates well with the Spring framework, and
there exists Spring modules, tutorials and documentation for this.

74

6.3. Alternative persistence technologies

6.3.2 Hierarchical

A hierarchical data model is usually represented by a tree of nodes with one root
node, and data as leaf nodes or node properties. This o�ers features such as complex
structures and a �exible schema, while still being very intuitive. An example of data
which bene�ts from this model is comments on the web, as shown in �gure 6.2. There
can often be comments on comments, and there is no way of knowing how much this
can be nested.

I like the weather we're having now!

I agree! The weather is nice!

I don't agree! The weather here is awful.

Why do you agree? Do you live in the
same place as him?

Maybe he just lives somewhere where
the weather is nice.

Figure 6.2: Example showing the hierarchical structure of comments.

A common way to transport data today is with a hierarchical data model such as
XML. This data model is very �exible, but performance su�ers from the amount of
parsing required. It is bene�cial if schemas of the data changes often, or are very
complex.

Native XML databases, such as eXist [31], are currently very immature and there
are few alternatives to choose from. It is therefore better to look at alternatives for
frameworks mapping hierarchical data to a persistent storage such as an RDBMS.

A content repository is a hierarchical content store for both unstructured and struc-
tured data. JCR is a Java standard for accessing this hierarchical content in a uni-
form manner. JCR version 1 and 2 were speci�ed in JSR 170 [62] and JSR 283 [29]
respectively.

Alfresco [16] is an example of an open source CMS which provides with a JCR API
to their content repository, but this is not its focus. The only real open source imple-
mentation of JCR is JackRabbit, which will be further discussed in this subsection.

The DPG currently uses a hierarchical structure for its content, de�ned in the presen-
tation pattern. For a simple and uniform way of handling data in DPG, it would be

75

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

bene�cial to continue with the hierarchical structuring of data. Support for XPath
is deprecated in JCR 2.0, in favor of JCR-SQL2 and JCR-JQOM [24]. This means
that DPG should move away from its use of XPath in the persistence layer and
implementation, in order to stay updated with the newest JCR implementations.

The candidate has some experience with JCR and JackRabbit from previous projects
tied to courses at the University of Bergen and the Bergen University College. This
should be useful for a persistence implementation in DPG using JCR.

JackRabbit

JackRabbit is a fully conforming implementation of the previously presented JCR
API. JackRabbit o�ers many features such as versioning, full text search and trans-
actions [32].

JackRabbit structures content in trees of nodes with associated properties. Data
is stored within these properties. An example of this is shown in �gure 6.3, which
shows a hotel reservation system made by the candidate using JackRabbit in a pre-
vious course project [64]. This model translates well to DPG's XML structure of
presentation patterns.

Since the initial implementation of JackRabbit 1.6 in DPG, JackRabbit has gone
through a lot of changes. With the new version 2.0 of JackRabbit, JCR 2.0 was
implemented. This brought new features such as transactional versioning and hot
backup. JackRabbit is currently on version 2.2.8, and is a more mature and better
performing implementation.

In the long term, the goal is for JackRabbit to support JDBC over JCR, which
would open up more possibilities for plugin resources while at the same time using
JackRabbit as a persistence implementation in DPG.

Many systems are now using JackRabbit in some form: Hippo CMS [4], Day Com-
munique [56], Alfresco [16], Nuxeo [12] and Magnolia CMS [9]. Despite this, there are
still problems with maturity and documentation of the technology. This is because
many of the large systems using JackRabbit have tweaked it for their own use, and
document their solution internally.

76

6.3. Alternative persistence technologies

Root

Customers

Reservations

Cities

Hotel1

City1

Room1 Room2

Res1

Customer
1

City2

name =
Customers

name

FromDate =
Startdate for
reservation

ToDate =
Enddate for
reservation

roomNumber =
Number of the

Room

hotelName =
The name of

the hotel

cityName =
The name of

the city

Figure 6.3: Example of a JCR node tree for a hotel reservation system. The circles
are nodes, the rectangles are properties containing the data, and the stipled lines
show references between nodes.

77

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

6.3.3 Object Oriented

Another way of representing information is in the form of objects, similar to how
objects are used in object-oriented programming. This brings with it features and
characteristics such as inheritence, polymorphism, encapsulation of objects, classes
and complex objects. This model solves the impedance mismatch of Java objects
and persistent storage.

The feature of an inheritance hierarchy and object references also translates into
a better mapping of hierarchical data, than a relational model would be able to
provide. A mismatch will occur while mapping circular references from an object
model to hierarchical, because this would result in hierarchical nodes being nested
an in�nite number of times. This should not a�ect the mapping of patterns and
content in DPG, as this will be mapped the opposite way. That is, a pattern de�nes
the hierarchical structure of the content, which can be easily mapped to an object
model. This makes an object-oriented data model good for the further development
of a uniform persistence solution in DPG.

There exists free and open-source native object databases supporting Java, such as
Db4o [108], but the technology is not very mature and there are few alternative
vendors to choose from. Though there exists query languages for native object
databases, such as JDOQL [98], none have been widely accepted and implemented
by vendors. This makes it harder to �nd a portable solution using native object
databases.

Another solution is using an Object-relational mapping (ORM) tool. As the name
implies, an ORM maps objects to a relational database for persistent storage and
retrieval. There are many mature ORMs and relational databases, so this solution
will be discussed further.

The current trend of Java frameworks is to move away from XML con�guration �les
towards more pure Java solutions using Java annotations. This desire for pure Java
solutions is re�ected also in persistent storage. Tools for mapping Java objects to
persistent storage are becoming increasingly popular, and speci�cally mapping Java
objects to relational databases. The Java Persistence API (JPA) is currently the most
widely accepted standard for mapping Java objects to relational databases. JPA is
speci�ed in JSR 220 [106], and the new version 2.0 is speci�ed in JSR 317 [107]. There
are multiple implementations of JPA, provided by vendors such as Hibernate [3],
EclipseLink [40] and OpenJPA [34]. This makes JPA more attractive, since there
exists multiple mature implementations which DPG can swap between in the future.
JPA also abstracts the underlying database away from the Java developer, as shown
in �gure 6.4, promoting separation of concerns [120].

78

6.3. Alternative persistence technologies

ApplicationJPARDBMS

SQL

Rows

JPA Entity
method

calls

JPA Entity
method

response

Figure 6.4: Communication between a RDBMS and the Java application through
JPA.

Listing 6.3 shows a simple example JPA entity; the Customer class. The Customer
class is mapped to a relational database table using JPA, by de�ning it as a JPA
entity using the @Entity annotation. Simple �elds are automatically mapped to
columns in the table, while some �elds such as the unique identi�ers of the entities
and relationships with other entities need to be speci�ed using JPA annotations. The
application can then simply call the object's setter and getter methods for storing
and retrieving persistent data.

Listing 6.3: Example of a JPA entity mapping for customers with reservations.

1

2 @Entity
3 public class Customer {
4

5 private int id;
6 private String name
7 private Collection<Reservation> reservations;
8

9 @Id
10 public int getId() {
11 return id;
12 }
13

14 public void setId(int id){
15 this.id = id;
16 }
17

18 public String getName() {
19 return name;
20 }
21

22 public void setName(String name) {
23 this.name = name;
24 }
25

79

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

26 @OneToMany(cascade=ALL, mappedBy="customer")
27 public Collection<Reservation> getReservations() {
28 return reservations;
29 }
30

31 public void setReservations(Collection<Reservation>
newReservations) {

32 this.reservations = newReservations;
33 }
34 }

The candidate has some basic experience with JPA through the course MOD-250 at
the Bergen University College.

Hibernate

Hibernate is a persistence provider for JPA. It implements the JPA speci�cation,
while at the same time o�ering more features not provided by JPA. Hibernate and
its extra features have been the inspiration for the expanded functionality of JPA
2.0, such as the Criteria API, second level caching and unidirectional one-to-many
mapping of entities [117]. This shows how in�uential Hibernate is for ORM tools
in Java. Hibernate o�ers advanced mapping features such as inheritance, polymor-
phism, support for the Java Collections framework and transitive persistence. It
also has support for multiple query languages, including native SQL queries, Java
Persistence Query Language (JPQL) and Hibernate Query Language (HQL).

Hibernate is a very popular framework, because it scales well and has high perfor-
mance. There is some performance overhead related to Hibernate's mapping and use
of re�ection, but good strategies for fetching, initialization and locking means that
Hibernate can often o�er better performance than pure JDBC coding. Hibernate is
also very mature and well documented.

It supports a wide variety of databases as its back-end, including Oracle, MSSQL,
and the open source PostgreSQL and MySQL databases [49]. This makes it a very
portable solution when it comes to persistent storage.

Hibernate integrates well with the Spring framework, and supports both transac-
tions and caching of data. It also supports full text searching, bean validation and
auditing/versioning of persistent classes.

80

6.4. Evaluation of proposed technologies and conclusion

6.4 Evaluation of proposed technologies and conclusion

Each framework supports a RDBMS as a persistent storage using JDBC. This is
practical, because the IT-department at the Department of Informatics, UiB, can
provide PostgreSQL servers for deployment. PostgreSQL also supports UTF-8, which
can be de�ned through the JDBC connection with each of the frameworks, as shown
in listing 6.4.

Listing 6.4: Setting the character encoding for persistent storage through JDBC.

1

2 jdbc:postgresql://localhost/exampledb?characterEncoding=UTF-8

DPG's persistence abstraction layer was designed with a hierarchical structure in
mind, but the interface is almost completely neutral to which data model is used
in the back-end. DPG handles entire XML documents, not speci�c values. Entire
patterns and presentation content documents are retrieved/stored through the DAO
layer. These documents can be stored in an RDBMS as LOBs or CLOBs, or in XML
databases either as �les or in their natural structure. The PV, PM and PCE also
puts the content into Java objects such as Pattern and Entity, meaning an object
model for persistence would work very well with the existing implementation. A good
uniform solution is therefore very achievable with each of the proposed persistence
technologies.

Table 6.2 presents a summary of the proposed technologies and the criteria speci�ed
in section 6.2, in the form of a comparison matrix.

Criteria MyBatis JackRabbit Hibernate

Performance Very good Medium Good

Maturity Good Medium Very good

Documentation Good Poor Very good

Spring integration Good Good Good

Open Source Yes Yes Yes

Transaction support Yes Yes Yes

Support for caching Yes Yes Yes

Standard Only SQL JCR JPA

Provides pure Java API No Yes Yes

Portability Medium Good Very good

Versioning of persistent data No Yes Yes

Table 6.2: Comparison matrix of persistence technologies.

81

Chapter 6. Evaluation of data models and persistence technologies for plugin
resources in DPG

MyBatis is a very high performance solution which works well, but the framework
does not implement any standard, and the solution is very low level, which doesn't
make it very portable. Mapping the SQL calls to Java objects needs to be done by
DPG or the plugins themselves, which will likely tie the implementation to a speci�c
RDBMS vendor. It does not provide with a pure Java API.

JackRabbit has a lot of useful functionality, provides an intuitive structure of data,
is portable and looks very good on paper. The choice of JackRabbit in DPG 2.0 was
optimistic to the fact that it would mature over time, but unfortunately it hasn't
matured enough. The documentation is still poor, and it still su�ers from some
performance problems, which was why the implementation was abandoned in DPG
in the �rst place.

Hibernate combines good performance with good functionality. It is a very mature
and popular technology, which is simple yet powerful to use. It ful�lls all the criteria
for a new persistence technology to be used in DPG. After this evaluation, Hibernate
came out as a very good choice. Hibernate will therefore be implemented as the new
persistence technology in DPG.

82

7
Implementing new plugin resource

management in DPG

This chapter will present the devised solution for the new plugin resource solution
in DPG. Challenges of the implementation and how these were overcome, will also
be discussed throughout the chapter.

7.1 Goals and challenges

The implementation must meet certain criteria, which are de�ned as goals. The
implementation must:

� Use standard JPA, making it a portable solution, both when it comes to
RDBMS vendor and JPA implementation.

� Integrate with the Spring framework and use Spring features whenever possible.

� Be easy to use, but still expose powerful features to plugin developers.

� Minimize con�guration, both for setting up DPG and for plugin developers.

� Support caching, transactions and locking. This should be automatic unless
explicitly speci�ed.

83

Chapter 7. Implementing new plugin resource management in DPG

� Be integration tested.

� Separate resources for each plugin.

The main challenge for the implementation was to make a feature rich and general
solution, while still having DPG maintain some control over the persistence opera-
tions. The solution should also be easy and intuitive for the plugin developers to
use. Typically, JPA is set up with a known domain model, and persistent objects are
often de�ned in con�guration �les. The DAOs are usually also tailored towards spe-
ci�c domain models. Unfortunately, there is no way to know the domain model for
the plugins' resources beforehand in the DPG, so the data access layer (DAL) must
be very general. This makes features such as caching and transaction management
a challenge; especially using the method-level solutions provided by Spring.

Even though JPA itself functions as a good and general DAL, giving plugins direct
access to this would mean sacri�cing DPG's control over the plugin resources. DPG
would have to rely on the plugins to avoid using vendor speci�c functionality or
breaking con�gurations. It would also be harder to use, and require more advanced
knowledge of JPA, caching and transaction management.

Though persistence using JPA is mostly intuitive, many errors are not discovered
until runtime. It is therefore important to provide guidelines of the speci�c use
of this implementation. These guidelines are directed at plugin developers and are
presented in appendix A.

7.2 The Hibernate and JPA persistence context

An overview of Hibernate and JPA was given in subsection 6.3.3. To understand
some of the implementation decisions in this chapter, some additional concepts need
to be explained.

Figure 7.1 shows the concept of a persistence context in JPA and Hibernate. Per-
sistent Hibernate or JPA entities have two states: managed and unmanaged. When
the entity object is in a managed state, it means that it is tied to a persistence con-
text, and thereby managed by JPA. JPA then recognizes the changes to the object,
and synchronizes this with the persistent storage whenever a transaction ends or a
flush() operation is called.

An unmanaged entity object can either be a new entity, or one that is detached
from the persistence context, that is an entity in a transient state. Changes to the
unmanaged entity are not recognized by JPA, and will not be synchronized with the
persistent storage, unless they are merged or persisted into the persistence context.

84

7.3. Using Hibernate/JPA and the Spring framework

Unfortunately, the merge() operation does not make the passed object managed,
but instead makes a copy of it managed. This can lead to concurrency issues and
unexpected behavior, because multiple processes can work on what seems to be the
same entity, using the same unique identi�er, but which in reality are two di�erent
objects [21]. The solution to this problem will be discussed further in section 7.6.

New
Entity

Persistence context

persist

Managed
Entity

Managed
Entity

Removed
entity

RDBMS

Each managed
entity

represents a
row in the
database

Detached
entity

removeEnd of
persistence

context

Figure 7.1: Entity objects managed by the persistence context are synchronized with
their respective rows in the database.

7.3 Using Hibernate/JPA and the Spring framework

7.3.1 Native Hibernate vs standard JPA implementation

To maintain control over JPA and the plugin data access, a new DAO interface will
be developed, called PluginResourceJpaDao. The plugin interface is expanded
with a setPluginResourceJpaDao()method, which the plugin manager will use
to give each plugin access to the DAO. This DAO and its methods will be presented
in section 7.6.

The implementation itself was evaluated to be either using native Hibernate, or JPA
using Hibernate as a persistence vendor. A native Hibernate implementation makes
it possible to persist and retrieve JPA entities, so the DAO could seemingly be made
to just expose JPA functionality. A native Hibernate solution combined with Spring
is very feature rich and powerful, making it very appealing compared to a standard
JPA implementation.

85

Chapter 7. Implementing new plugin resource management in DPG

Both JPA and Hibernate provide type-safe queries in the form of Criteria objects
(further explained in section 7.5), though Hibernate can provide detached Hibernate
Criteria objects. This means the DPG plugins could make queries using Criteria
API directly. This is not possible with standard JPA, where query building using
Criteria must be attached to a persistence context.

The Spring framework also integrates very well with Hibernate. Spring can provide
a feature rich tool, called HibernateTemplate [53], which provides multiple ways
to save and retrieve Hibernate (and JPA) entities. These operations were also much
more intuitive and predictable to use than their standard JPA counterparts.

The problems arise when trying to use more advanced features such as caching and
querying. Native Hibernate uses Hibernate Query Language (HQL) for queries, and
translates its own proprietary Criteria objects directly to an SQL query. The Hiber-
nate Criteria objects are not an implementation of JPA Criteria, so a plugin resource
interface using Hibernate queries or Criteria objects would lock DPG to Hibernate.

Currently, the extra functionality of a native Hibernate implementation in Spring,
as opposed to using standard JPA, consists of mostly convenience features. This in-
cludes features such as the HibernateTemplate.findByExample() method or
the Session.saveOrUpdate() method provided by Hibernate, which automati-
cally �gures out if an entity is new or already has been saved before, and persists or
updates the entity based on this. With JPA, this has to be done manually, using the
JPA persist() and merge() operations, along with careful use and con�guration
of the persistence context, as explained in section 7.6.

A pure JPA implementation provides a lot less features, but is much more portable.
The importance of a fully portable solution outweighs the bene�ts of the convenient
functionality provided by Hibernate. This implementation will therefore directly use
JPA, with Hibernate as a persistence provider, as shown in �gure 7.2.

7.3.2 The JPA implementation

Spring provides many convenient features, such as inversion of control (IoC) mech-
anisms [41], which will be used to the fullest in this implementation. Spring also
provides a tool for JPA operations, called JpaTemplate, but this does not pro-
vide with any special features, other than automatically converting persistence ex-
ceptions to Spring exceptions [54]. This can also be achieved by using the Spring
@Repository stereotype annotation [90] in the DAO class, which will be used in
this implementation. The @Repository annotation also tells Spring that this is a
repository module, which allows it to be further used in Spring module management
and eliminates the need for XML con�guration of the DAO bean.

86

7.3. Using Hibernate/JPA and the Spring framework

DPG

Hibernate

PostgreSQL
Server

SQL Rows

JPA
EntityManager
method calls

PluginResourceJpa
Dao

Plugins
Plugin

A
Plugin

B

JPA Entity
Manager

Core
Components

JPA Entity
operations

JPA
EntityManager

method
response

Figure 7.2: The new plugin resources architecture of DPG.

Support for JPA 2.0 in Hibernate was only recently added, so Hibernate's current
release, version 3.6 [43], will be used. Spring and Hibernate/JPA currently provide
solutions for JPA 2.0 that are backwards compatible with JPA 1.0. Since this imple-
mentation will only use JPA 2.0, it is therefore important to remember to use only
the JPA 2.0 API in the implementation.

Throughout the implementation, JPA con�guration using Java annotations is pre-
ferred over con�guration in XML �les. This continues DPG's trend of moving away
from XML con�gurations, and further minimizes the amount of con�guration for
setting up DPG. Spring, Hibernate and JPA is constantly evolving towards making
con�gurations more automatic and annotation-based. This also helps a lot for plu-
gins, because entities are automatically scanned in the classpath, and features such
as transactions and caching for entities can be made automatic unless otherwise
speci�ed.

The back-end RDBMS for deployment will be a PostgreSQL server [13]. This is
because it is an advanced open source SQL database, and it is the server provided
by the IT-services of the Department of Informatics, University of Bergen. Listing
7.1 shows a part of the applicationContext-persistence-hibernate.xml
con�guration �le, where the data source is speci�ed. This can easily be changed to a
number of other popular RDBMS vendors [49], by simply changing the data source
and the speci�ed SQL dialect to be used by Hibernate. Another JPA implementation
than Hibernate, such as OpenJPA [35], can also be used by simply changing some

87

Chapter 7. Implementing new plugin resource management in DPG

lines in the JPA persistence.xml con�guration �le.

Listing 7.1: The current data source con�guration using a local PostgreSQL server.

1 ...
2 <bean id="postgreDataSource"
3 class="org.apache.commons.dbcp.BasicDataSource" destroy-method="

close">
4 <property name="driverClassName" value="org.postgresql.Driver"/>
5 <property name="url"
6 value="jdbc:postgresql://localhost:5432?useUnicode=true&

characterEncoding=UTF-8"/>
7 <property name="username" value="postgres"/>
8 <property name="password" value="postgres"/>
9 </bean>

10 ...

7.4 Entity management

There are multiple ways to access a JPA implementation, and they all di�er on how
the application is given access to the JPA DAO class, EntityManager. Spring
provides multiple ways to access an EntityManager object in a Spring environ-
ment. An EntityManagerFactory object can be obtained through JNDI [82], or
through a Spring bean such as the LocalContainerEntityManagerFactoryBean
bean class, which will be used in this implementation. This is the only solution which
provides with full JPA capabilities in a Spring environment, including full and �exi-
ble control over con�guration within the application, and support for both local and
global transactions [99].

The entity manager factory can be injected directly in a DAO, with the Spring
@PersistenceUnit annotation. A problem with this solution, however, is that
when the DAO creates a new instance of EntityManager, the persistence con-
text is reset, and all entity objects will become detached (unmanaged), as explained
in section 7.2. In the new plugin resource implementation, this sort of behavior
should be avoided, because it is very error-prone unless the plugin developers have
very good control over their entities and how they are managed. One way to solve
this, is to use the Spring provided shared EntityManager object to be injected
instead of the factory. A shared EntityManager object is therefore injected into
the PluginResourceJpaDao using the @PersistenceContext annotation. An
EntityManagerFactory instance still works behind the scenes to provide perfor-
mance bene�ts of automatically preserving EntityManager resources in a connec-
tion pool [96].

By default, the Spring injected EntityManager bean uses a transaction-scoped

88

7.5. Query language

persistence context, which means a persistence context only exists inside of a trans-
action and all entities are detached after a transaction is committed. This works
against the bene�ts of a shared EntityManager in this implementation, because
the general DAO forces nearly every action to be in its own transaction, thereby
detaching all entities from the persistence context immediately. This also means
that entities in a collection cannot be lazily loaded in a plugin. To remedy this, the
implementation will use an extended persistence context, which ties the persistence
context to the scope of the EntityManager object [50]. This solution uses more
memory, since the persistence context will contain more entities, but will solve these
problems and make for a much more intuitive solution for plugin developers.

The JPA implementation of the PluginResourceJpaDao interface is a class called
PluginResourceJpaDaoImpl. The Spring injected DAO bean referring to this
class is called pluginResourceJpaDao. The extended persistence context is not
thread-safe with the use of a singleton bean in Spring, which is default for Spring
beans. The attribute scope of the pluginResourceJpaDao bean is therefore set
to the value prototype, which means a new bean is created each time a request
for that bean is made [48]. This also gives control over the life of the bean, and
thereby the persistence context. Since plugin operations only get called through a
view, a new persistence context is set for each view, through the plugin manager, so
the increased memory usage should be minimal.

7.5 Query language

Hibernate provides multiple ways to retrieve data:

� Using HQL queries.

� Using JPA Criteria objects.

� Using Hibernate Criteria objects.

� By entity example, class etc.

� Using JPQL queries.

� Using native SQL queries.

The only real pure JPA queries are with JPQL [84] and JPA Criteria API [89], which
will be the only ones used in this implementation, to maintain portability.

JPQL queries are easy to read and understand, as shown in listing 7.2, but su�er from
some issues. The queries need to be parsed every time, and they are not type-safe,

89

Chapter 7. Implementing new plugin resource management in DPG

meaning typos will likely not be noticed immediately, because the query string is not
checked until runtime. Pure JPQL string queries are vulnerable to injection attacks,
similar to SQL injection [87]. A solution could be to include a list of parameter
objects with the string query, implementing javax.persistence.Parameter
[81] together with an argument. There is unfortunately no simple way to let plugins
make their own JPQL queries, and at the same time force them to make queries
parameterized. For this reason, JPQL queries will not support parameters, and
should only be used for very simple queries which do not directly include user input
values. Criteria queries should therefore be used for secure, type-safe and high-
performance queries, while JPQL can be used for simple static queries.

Listing 7.2: A simple JPQL query fetching all User entities with ages over 30.

1 String jpqlQuery = "SELECT u From User u where u.age > 30";

JPA 2.0 provides with an API to de�ne queries dynamically with objects. This API
is referred to as the JPA Criteria API. These queries are checked at compile time,
prohibiting syntactically incorrect queries, and they force parameterized queries,
making them less error prone and more secure [89]. Some simple examples of both
JPQL and Criteria queries are shown in the guidelines in appendix A.

JPA also supports named queries [116], which can be mapped with the @NamedQuery
annotation. Unfortunately, this can be either a JPQL query or a native SQL query,
and naming collisions can easily occur in this implementation. Named queries also
give the plugin developer too much responsibility over con�gurations, such as caching.
The bene�ts of having named queries are small compared to the increasing risk of
an unportable solution.

7.6 New plugin resource interface

This section will present the new plugin resource interface. The Java code and
Javadoc for this interface is shown in listing 7.3. How the plugin developers should
use these methods will be presented as guidelines in appendix A.

JPA entities are de�ned using the @Entity on a class, meaning they are determined
at runtime. This provides a challenge for the implementation of the DAO, as not
all methods can be made generic, because there is no way to know if the objects
are JPA entities at compile time. Some methods, such as the ones using type safe
JPA Criteria queries, can be generically typed, while others require casting of
objects. This means that the plugins executing a JPQL string query need to know
the expected type of the response. This should not be a problem, because the return
type is de�ned in the query itself.

90

7.6. New plugin resource interface

Listing 7.3: The new plugin resource interface

1

2 public interface PluginResourceJpaDao {
3

4 /**
5 * Persist a JPA entity if it's a new entity, otherwise synchronize

persistence context,
6 * and thereby the entity, with database.
7 *
8 * @param entity JPA Entity to save
9 */

10 public void saveOrUpdateEntity(Object entity);
11

12 /**
13 * Save or Update JPA entities inside a single transaction.
14 * For each entity, persist if it's a new entity,
15 * otherwise synchronize persistence context
16 * with database.
17 *
18 * @param entities JPA Entities to save
19 */
20 public void saveOrUpdateEntities(Object... entities);
21

22 /**
23 * Find all JPA entities with the provided name.
24 *
25 * @param name
26 * @return List of JPA entities loaded from the database
27 */
28 public List<?> findAllEntitiesByName(String name);
29

30 /**
31 * Find all entities by class.
32 *
33 * @param <T> The specific class marked with @Entity annotation
34 * @param clazz a class
35 * @return List of JPA entities loaded from the database
36 */
37 public <T> List<T> findAllEntitiesByClass(Class<T> clazz);
38

39 /**
40 * Find all entities by class and unique id (primary key).
41 *
42 * @param <T> The specific class marked with @Entity annotation
43 * @param clazz a class
44 * @param id unique id of the JPA entity
45 * @return JPA Entity loaded from the database
46 */
47 public <T> T findEntityByClassAndId(Class<T> clazz, Serializable id)

;
48

91

Chapter 7. Implementing new plugin resource management in DPG

49 /**
50 * Get a JPA Criteria builder which can be used to build criteria

queries.
51 * These queries can then be used in the method findByCriteriaQuery.
52 * @return CriteriaBuilder
53 */
54 public CriteriaBuilder getCriteriaBuilder();
55

56 /**
57 * Execute a find query based on the JPA Criteria API. This method

does not allow
58 * DELETE or UPDATE queries.
59 *
60 * @param <T> The specific class marked with @Entity annotation
61 * @param query JPA Criteria query
62 * @return List of entity results from the query
63 */
64 public <T> List<T> findByCriteriaQuery(CriteriaQuery<T> query);
65

66 /**
67 * Execute a find query based on the Java Persistence Query Language

.
68 * This method does not allow DELETE or UPDATE queries.
69 *
70 * @param query JPQL query
71 * @return List of results from the query
72 */
73 public List<?> findByQuery(String query);
74

75 /**
76 * Remove a JPA entity from the database.
77 *
78 * @param entity JPA entity to remove.
79 */
80 public void removeEntity(Object entity);
81

82 /**
83 * Remove multiple JPA entities from the database inside a single

transaction.
84 *
85 * @param entities JPA entities to remove.
86 */
87 public void removeEntities(Object... entities);
88

89 }

92

7.6. New plugin resource interface

A more detailed explanation of some of these methods will be given in the following
paragraphs.

saveOrUpdate(): This method persists a JPA entity if it is a new entity, or syn-
chronizes the persistence context, and thereby the entity, with the database. It
was one of the hardest methods to implement, because JPA does not support a
convenient way to automatically save or update an entity, such as a Hibernate
Session.saveOrUpdate() operation. A popular belief is that the JPA merge()
operation is JPA's answer to this problem, but it su�ers from a fundemental �aw
that is easy to overlook. The di�erence between JPA's merge() operation and Hi-
bernate's update() operation, is that the update() method attaches the passed
entity to the persistence context, while the merge() method copies the passed ob-
ject into the persistence context, and then returns the copy. This means that the
merge() method does not persist the passed entity object, or any of the referenced
entities, into the persistence context [21].

It will not be possible to automatically point all eventual old references in the plugin
to the new managed object. This makes it very easy for plugin developers to mistake
a detached entity object with one that lives in the persistence context, and will
very likely lead to concurrency issues, and unexpected behavior such as breaking
bidirectional associations [88]. The solution is therefore to avoid any use of the
merge() operation, and rather rely on the extended persistence context. This
means changes to the managed entities from outside of transactions are bu�ered in
the persistence context. Synchronizing with the database then requires a flush()
operation to be called on the EntityManager inside the transactional method
saveOrUpdateEntity().

getCriteriaBuilder(): This method provides a JPA CriteriaBuilder object
which can be used to build criteria queries. It is not possible to simply send a
CriteriaQuery object to the plugin, because a CriteriaBuilder object is
needed to add certain criteria to the criteria query. Unlike Hibernate, JPA does not
currently support detached criteria query building, so a JPA CriteriaBuilder ob-
ject is sent to the plugin through this method. Figure 7.3 shows how a plugin can use
the PluginResourceJpaDao bean to retrieve a CriteriaBuilder object, build
the criteria query and then execute the query using the findByCriteriaQuery()
method.

�ndByCriteriaQuery() and �ndByQuery(): These methods support execut-
ing queries for retrieving data, but not for updating or deleting. A JPQL injection

93

Chapter 7. Implementing new plugin resource management in DPG

attack can therefore never be used to update or delete anything. Updating and delet-
ing should be done through the saveOrUpdate() and removeEntity() methods
respectively. They both use the Query.getResultList() method inside a trans-
action, which Hibernate can guarantee will never return stale data [51].

Object1Plugin PluginResourceJpaDao

PluginEntity

setName

setAnotherValue

saveOrUpdate(pluginEntity)

findByCriteriaQuery(Criteria query)

List of results

JPA EntityManager

persist(pluginEntity)

findByCriteria(Criteria)

List of results

generateElement

HTML element

RBDMS

SQL create/update

SQL Query

Rows

getCriteriaBuilder()

CriteriaBuilder

Build Criteria query using CriteriaBuilder

getCriteriaBuilder()

CriteriaBuilder

<<create>>

transform results into HTML

Figure 7.3: A plugin persisting and accessing resources using persistent objects and
JPA Criteria queries.

94

7.7. Transaction management and locking

7.7 Transaction management and locking

The extended persistence context solution of this implementation reduces the chance
of concurrency issues, as explained in section 7.4. A transaction management cov-
ering lower level issues is still required. Plugin developers need not bother with the
transaction management of the implementation. To the plugin developers, entities
will be updated in the database at the same time as the methods are invoked, since
each method is run in its own transaction.

The implementation uses Spring's annotation driven transaction management for
transaction con�guration [102]. As mentioned in section 7.4, both global and local
transactions are supported. Default for the Spring provided transaction manager is
that propagation of transactional methods is required. This means that all meth-
ods mapped with the @Transactional annotation are given a logical transaction
scope, but are mapped to the same physical transaction if one exists. If one of these
logical transactions trigger a rollback, the outer transaction scope containing them
will cast an UnexpectedRollbackException exception. A rollback will be trig-
gered if an exception occurs inside the transaction, unless the exception is explicitly
de�ned to be ignored. This can be caught by the plugin, which can then choose to
retry the process. Spring also de�nes six other propagation behaviors, but these are
for more special cases, like throwing an exception if there is an existing transaction.
An isolation level for transactions can also be de�ned. Its goal is to prevent issues
such as lost updates and dirty reads, as explained in section 6.2.2.

Locking is important to avoid collisions of concurrent updates on detached entities,
because this happens outside of the transaction and persistence context scope. There
are two main types of transactional locking supported by JPA; pessimistic locking
and optimistic locking. Pessimistic locking locks the resource from the time it is
�rst accessed until the transaction is complete, disallowing concurrent access to the
resource. Optimistic locking saves the state of the resource at the time it is accessed,
but does not lock it, allowing concurrent access to the resource. When the resource
is then updated, its state is compared to when it was �rst accessed, and if the two
states di�er, a con�ict is detected and the transaction is rolled back. JPA 1.0 only
supports optimistic locking, while both optimistic locking and pessimistic locking of
persistent objects are supported by JPA 2.0 [69]. A JPA entity can be optimistically
locked if it contains a lock value �eld annotated with @Version. Pessimistic locks
are rarely needed, and can cause bottlenecks and deadlocks, so it will not be imple-
mented. This implementation will automatically check if the entity is versionable,
and optimistically lock it if it is. If a process tries to update an entity with a version
lower or equal to the current persisted version, an OptimisticLockException
will be thrown, giving the process a chance to try again.

95

Chapter 7. Implementing new plugin resource management in DPG

7.8 Caching

EhCache [58] will be used as the cache provider for this implementation. This is
because it integrates very well with both Spring, Hibernate and JPA, and was even
previously bundled with Hibernate.

There are multiple ways to cache JPA entities with JPA, Hibernate and Spring.
Spring provides with DAO method level caching, but this would make little sense
with a generic DAO. This is because it will not be possible to �nd a reasonable time
to �ush or invalidate the cache based on the generic methods of the DAO. Caching
query results and entities will still work very well. The implementation will therefore
be made to support caching of both query results and entities.

The persistence context itself works as a cache for entities, which is de�ned as the level
1 cache. To support caching of entities across the entire application, a level 2 cache
needs to be used. This cache is tied to the Spring managed EntityManagerFactory
bean. The advantages of a level 2 cache is that database access for already loaded
entities will be avoided, and read queries can be a lot faster. This is because when
a query is executed, Hibernate �rst checks the level 2 cache for the entity [70].

Though Hibernate's caching strategies are more con�gurable in the annotations, the
JPA caching is easier to use and standardized. This implementation will therefore
use standard JPA entity caching using the @Cacheable annotation instead of Hi-
bernate's proprietary @Cache annotation. All entities will be automatically cached
unless explicitly speci�ed otherwise with the @Cacheable(false) annotation. To
enable this, the persistence unit property
<shared-cache-mode>DISABLE_SELECTIVE</shared-cache-mode> was set.
Query results provided by the DAO are also automatically cached, which will dra-
matically increase performance.

7.9 Separation of plugin data

A problem with Hibernate and JPA is that entities with the same names are not
allowed. The same problem applies for the naming of database tables to be gen-
erated by a JPA entity. A custom naming strategy can be implemented using the
NamingStrategy interface of Hibernate, to intercept and automatically change the
names of tables tied to entities. This is the only safe way to automatically change
the names without causing confusion when making queries, because Hibernate auto-
matically converts the entity names in the queries as well. The problem is that the
newest version of Hibernate only passes a string containing the simple class name

96

7.10. Integration testing

for the entity, not the canonical name, so there is no way to split the entities by
package name. This can also not be solved using re�ection, as the class or object
is never passed through the NamingStrategy interface. This would also be a so-
lution which would likely lock DPG to Hibernate, and would not solve the problem
for queries.

To solve this, plugins must follow a naming convention for naming their entities
and tables. Plugins should always name their entities and tables with the pre�x
pluginName_, as explained further in the appendix section A.1.

It is not possible with JPA to completely prevent plugins from accessing other plug-
ins' data, because they can always �nd the entity classes in DPG if they speci�cally
look for them. The new plugin resource solution still prevents accidental use of the
same resources, which was the biggest concern.

Plugins get full control to separate their own resources by page, presentation, pat-
tern or user. This was possible before aswell, but harder since the resources were
physically split automatically by presentation, while now they are split by plugins.
This gives plugins the ability to easily reuse resources across presentations, such as
data migrated from other systems, avoiding unnecessary duplication of resources.

7.10 Integration testing

As speci�ed by Karianne Berg [17], the application should be unit tested with a
minimum of 75% test coverage. Test driven development [67] was used throughout
the implementation, to force a good test coverage and reliable solution. This was
seen as extra important for a portable solution such as this JPA implementation,
since the tests can be used to see if an eventual new implementation works as it
should and as expected by the plugins.

The testing of the implementation uses JUnit 4 [7] and the Spring TestContext
Framework [101]. This was chosen because it lets the tests easily specify di�er-
ent application contexts to use, along with support for autowiring dependencies,
changing transaction management and caching con�gurations. It also provides with
templates for simple JDBC querying to con�rm states and annotations for timed
tests, repeating tests and more.

A new JPA persistence unit and Spring application context was made for testing.
This allows the tests to use a di�erent database and con�guration, so as to not
corrupt data in the database used for deployment. The database used for testing is
an in-memory database, called HSQLDB [55], which will only live inside a single test

97

Chapter 7. Implementing new plugin resource management in DPG

run. Test data is reset for each unit test, to ensure they do not a�ect each other.

A problem with the testing is that JPA's automatic entity scanning scans from the
parent of the classpath META-INF/ folder, where the �le persistence.xml is
loaded from. This could be remedied with the implementation of a custom Spring
PersistenceUnitPostProcessor class, or by de�ning a new persistence.xml
�le with the persistence-xml-location Spring property. The �rst option does
not give enough bene�ts compared to the time it would take to develop. The second
option does not work, as Hibernate still scans entities from the classpath. Future
testing of plugins and an eventual full JPA persistence implementation will require
entities from the main package anyway, so it is better to use an entity from the main
package for testing.

EclEmma [20], a Java code coverage tool in the form of an Eclipse [39] plugin, was
also used in the development of the unit tests. EclEmma checks Java test code
coverage, by analysing methods and conditions which are visited by the JUnit unit
tests. It does not give a full picture of everything that should be tested, but at least
provides a method and instruction level view of what code the tests cover. Figure
7.4 shows how it also presents an intuitive overview of both code and packages when
tests are run. This overview marks code with red, yellow or green depending on the
coverage, and shows the test coverage percent of each package and class. This makes
it easy to remember testing all methods and conditions. Cobertura [25] has been
used at JAFU to track DPG's Java code test coverage in a similar way in deployment.
EclEmma shows the current test coverage of the implementation as over 90%, which
is a good margin above the previously speci�ed 75% minimum.

98

7.11. Evaluation of implementation

Figure 7.4: EclEmma eclipse plugin showing unit test code coverage. Code marked
in green means it is covered by a test.

7.11 Evaluation of implementation

This implementation added the PluginResourceJpaDao interface and the
PluginResourceJpaDaoImpl class. Changes were made in DPG's plugins,
FieldPluginManager class and FieldPlugin interface. A new Spring applica-
tion context �le called applicationContext-persistence-hibernate.xml
was made for con�guration of Hibernate and JPA. The �le persistence.xml is
used for con�guration of JPA persistence units, while the level 2 cache con�gurations
are contained in the ehcache.xml �le. Only a couple of lines regarding database
con�guration needs to be changed for deployment, as shown in listing 7.1.

99

Chapter 7. Implementing new plugin resource management in DPG

To summarize, an evaluation of the implementation, the criteria and goals de�ned
in section 7.1 will be discussed. This should be compared to the evaluation of the
old resource plugin solution in section 5.1.

The new plugin resource solution in DPG is a portable solution, implementing a
standard, JPA 2.0. This means that both the current RDBMS used, PostgreSQL,
and the JPA implementation, Hibernate, can be easily replaced in the future, and
plugins will not be a�ected. The testing of the DAO layer makes it easier to check
if a new implementation works as intended.

The performance of Hibernate was evaluated to be satisfactory in chapter 6, and
the performance has been further improved with the implementation of automatic
caching of data.

The new plugin resource solution in DPG is easy and intuitive to use. Plugin de-
velopers can use Java objects for persistent storage of data, and use references and
relationships between objects for complex structures. Plugins' entities are automat-
ically scanned, and other than the annotation of the entities themselves, plugins do
not have to con�gure anything. The DAO implementation provides with and handles
transactions, while at the same time providing with locking support.

The solution integrates well with the Spring framework, utilizing its IoC functionality
and JPA support. The current version of Spring (v.3.0.5) and Hibernate (v.3.6.3)
used in DPG, makes con�guration very easy and favors the use of Java annotations
over XML con�guration �les.

Though it was not possible to fully separate plugin resources with this implementa-
tion, accidental corruption of data between plugins will no longer be likely.

Versioning of persistent data was considered very low priority and not implemented
in this solution. A proposed solution for this will be presented in section 8.3.12.

The poll plugin, shown in section 5.1, can now store users and their answers in a
JPA entity as shown in �gure 7.5. The user's answer can be fetched with a simple
JPQL select query, and the number of each answer can be fetched using the JPQL
count operator. These are both very fast operations for a RDBMS.

100

7.11. Evaluation of implementation

RDBMS

PollPlugin
UserEntity

ID (PK)

1

2

Username

Kelly

Øystein

3 Aleksander

Answer

No

No

Yes

Figure 7.5: Poll plugin can use the new plugin resource solution to easily and e�-
ciently fetch the required data through a JPA entity.

While relatively simple plugins, such as the previous examples, reap great bene�ts
from this new solution, it really opens up possibilities for some complex and powerful
plugins, such as plugins which migrate data with other systems than DPG. An
example of this would be a plugin storing and presenting geographic data provided
by OXD.

101

102

8
Evaluation, Experiences, further development

and conclusion

8.1 Evaluation of goals

The overall goal of this thesis was to expand the plugin architecture and thereby the
applications of DPG. The sub-goals to achieve this were:

1. Evaluate the current plugin architecture of DPG 2.1.

2. Propose and evaluate solutions for improvement of the plugin. architecture in
DPG, and implement the best solutions.

3. Evaluate the current solution for persistent storage of DPG plugin data.

4. Propose and evaluate new solutions for plugin resources in DPG.

5. Implement an improved plugin resource solution for DPG.

6. Provide guidelines for using the new plugin resource solution.

Subgoal 1 was achieved in collaboration with Aleksander Waage [114] in chapter 3.
The current solution was thoroughly documented as it was being evaluated, with
the focus on making explanatory �gures and diagrams. Major weaknesses were
discovered while trying to make plugins for advanced maps using dynamic content.

103

Chapter 8. Evaluation, Experiences, further development and conclusion

This included entity list handling in DPG, support for multiple entity �elds in plugins
and support for multiple entity instances in a single view.

Followed by this, subgoal 2 was achieved by proposing direct solutions to the weak-
nesses which were discovered. This, along with the implementation improving the
plugin architecture, was also achieved in collaboration with Aleksander Waage in
chapter 4. Throughout the evaluation and the implementation, there was always a
focus on generality, to make sure the solutions cover as many cases as possible. A
plugin for generating dynamic maps with markers loaded from the PCE was made
to test the implementation. The plugin was successfully made using the new plugin
architecture. It will be extended with more functionality, such as user comments in
map markers, by Aleksander Waage in his Master thesis [114].

The current solution for plugin resources in DPG 2.1 was evaluated in chapter 5.
The evaluation concluded that it was a very bare-bone and simple solution, with
no features for structure, performance, concurrency control or data integrity. This
proved that a new plugin resource solution was very important, especially given the
importance of plugins and their role in data collection and user interactions in DPG.
This results in subgoal 3 being achieved.

Chapter 5 proposed solutions for a new and improved architecture for plugin re-
sources in DPG. These solutions were evaluated based on maintaining portability
and giving DPG some control over the plugin resource management, while at the
same time providing good performance and functionality for plugins. The conclusion
was to provide plugins with an indirect access to the persistence technology through
a DAL controlled by DPG. In chapter 6, popular data models and technologies were
discussed and evaluated. The criteria for the technologies were that they provide an
intuitive solution requiring little con�guration or special knowledge, while providing
portability, concurrency control and good performance. The conclusion was to use
Hibernate as a JPA implementation, as this is a very mature technology with bene-
�ts of both performance and ease of use. This means that chapter 5 and 6 achieve
subgoal 4.

Chapter 7 presents the implementation of a new and improved solution for plugin
resources in DPG. All decisions are thoroughly evaluated and described, with a fo-
cus on ease of use and portability while providing with powerful features for any
types of DPG plugins. Plugin resources are now structured as Java objects using
JPA. CRUD operations can be accessed through the new PluginResourceJpaDao
DAO, which automatically handles things such as caching and transactions. The so-
lution currently uses Hibernate as a JPA implementation, and PostgreSQL as a
persistent storage back-end, but both of these can be easily changed in the future,
due to focus of portability in the new plugin resource solution. More speci�c im-
provements over the old plugin resource solution is presented in section 7.11. This

104

8.2. Experiences

implementation achieves subgoal 5.

Finally, appendix A provides guidelines for using the new plugin resource solution.
This means subgoal 6 is achieved.

The ful�llment of all 6 subgoals results in a vastly improved plugin architecture. This
means DPG is now a reasonable choice for advanced data collection and user inter-
actions, making DPG more future proof. This has become increasingly important as
the development of the web has veared towards user interaction and collaboration
as de�ned by the Web 2.0 standard. It also opens up for possibilities for migration
of data with other systems which can be persisted and presented using DPG. The
main goal of the Master thesis is therefore achieved.

8.2 Experiences

8.2.1 Development process and methodology

Master students working on DPG are provided with o�ce space at the JAFU o�ce at
the Department of Informatics. This work environment, along with the collaboration
with other students and working together on a large, complex system, proved to be
a great experience.

This thesis has included work on nearly every component of DPG. That includes
development of plugins, changes to the persistence layer, pattern development, and
general changes to both the PCE, PV and PM. It was challenging to work with such
a large system and try to understand the code of a collaborative e�ort from many
Master students. A reoccuring problem during this Master thesis, was that a lot of
DPG's implementation details were very poorly documented. This consumed a lot
of time for both the candidate and others working on DPG. To try to mitigate this
problem for future developers of DPG, both the current state and architecture, and
the new implementation, was thoroughly documented as the candidate went through
it.

The candidate tried to follow the agile methods, as described in section 1.4. This
was di�cult at times, especially test driven development, but ultimately proved to
give great bene�ts. For example, pair programming forces discussions about every
implementation detail, and test driven development makes the code more focused
and easier to debug.

Throughout the development, the candidate came in contact with a lot of di�er-
ent technologies used in DPG. While many of the technologies were made familiar

105

Chapter 8. Evaluation, Experiences, further development and conclusion

through courses taken previously during the Master degree, a lot was completely
new. The entire Master thesis has been a learning process, and the candidate has
matured his development skills greatly.

8.2.2 Technologies

The Spring framework was at �rst a scary concept, with a lot of apparent �behind-the-
scenes magic�. After learning about how it works, and using it during development,
the candidate grew very fond of the many brilliant features and ease-of-use that
Spring provides. The Spring framework saved a lot of development time.

Other technologies such as JDOM, XSLT and Velocity Templates also proved to be
of great value. DPG uses Log4J [33] for advanced logging, and this provided great
help in understanding the system and for debugging code.

At �rst, the implementation of some complex features using JPA and Hibernate
produced some behavior that was very strange to the candidate. The implementation
required a lot more research than the candidate had anticipated, but in the end was
well worth it. The Spring source- [104] and Hibernate documentation and forums [3]
helped a lot in understanding these technologies.

Experiences with other technologies, such as the source code and project management
tools Subversion [36] and Trac [95], on a larger system has proved to be invaluable.
They have made collaboration easier, and the version and ticket history can be used
as documentation to better understand the system.

8.3 Further development

This section will present some possible improvements and further development of
DPG. During the Master thesis work, the candidate gained a lot of experience with
nearly every aspect of DPG, as well as its �aws. This sparked ideas for improvements
in DPG.

8.3.1 Plugins reacting to events in DPG

The plugin architecture of Joomla! follows an observer design pattern [67], which
means that plugins are observer classes that attach and react to a global event
dispatcher object in the Joomla core. The plugins only get access to presentation
content by handling the throughput of the content by implementing methods such

106

8.3. Further development

as onBeforeContentSave() and onBeforeDisplayContent() which respec-
tively handle content before it is saved and before it is presented in HTML. This can
inspire a similar pattern in DPG, where multiple plugins may react to the same event
and manipulate the same content. An example is where one plugin fetches an image
�le path, while the other wraps it in an HTML image tag, splitting the responsibility
of the ImagePlugin plugin in DPG into multiple plugins.

8.3.2 Communication between plugins

There is currently no functionality for plugins in DPG to communicate with each
other. This proved to be a problem in the collaboration of Øystein Rolland and
Morten Høiland during their Master theses, in their e�orts to make plugins providing
XForms support in DPG. One plugin was made to present XForms in DPG, while the
other was made to design and persist them. This required a communication between
the two plugins, which was not facilitated. The plugins ended up using a loophole,
communicating through a con�guration �le in DPG. It would be useful with a good
way for plugins to communicate with each other.

8.3.3 New functionality in PCE

In this Master thesis, support for plugins using multiple entity �elds was developed.
A plugin can also de�ne its own form �eld to be presented in the PCE. However,
this form �eld is currently only tied to one entity �eld. An idea would be to give a
plugin the option to generate a form �eld in the PCE which can get multiple values.
An example of this is using DynamicMapPlugin to let a publisher input markers
by clicking on a map. The data for these markers (which contain name, latitude and
longitude) is then given to the DPG, which persists and handles them like an entity.

During his Master thesis work, Øystein Lund Rolland developed a solution for design-
ing XForms to be used in DPG. A part of this solution was a tool for administrating
XForms, intented for publishers only. This tool was presented using the PV, but
would be much more natural in the PCE along with all the other publisher tools.
An idea for further development would be to give plugins the opportunity to present
administration tools in the PCE.

8.3.4 Further abstract the plugins from the pattern designer

One of the goals for the solutions presented in this Master thesis, was to abstract
as much as possible between the di�erent users and developers of DPG. The pattern

107

Chapter 8. Evaluation, Experiences, further development and conclusion

designer much too often needs to know details of the plugins it uses. An example
of this is that the pattern designer currently needs to de�ne the JavaScript libraries
that the plugins use, in the pattern. It would be an idea to let plugins de�ne these
libraries themselves and let DPG handle this further. There may also be other things
that can improve abstraction between pattern designers and plugin developers, or
even plugin developers and DPG. This should be further looked into.

8.3.5 Abstract plugins from the DPG core

The DPG core components are very tightly integrated with certain plugins, leaving
some speci�c references to plugins for list and sub-entity functionality. This means
that, currently, changes to the plugins or plugin interface can break some very core
functionality in DPG. The plugins should be completely abstracted from the DPG
core for a looser coupling and higher cohesion of DPG components [67].

8.3.6 Further development of PPDev

PPDev is a web-based tool for developing and validating presentation patterns in
DPG. It was developed by Jostein Bjørge in his Master thesis [18].

The presentation pattern speci�cation contains very speci�c rules to how a presenta-
tion pattern should be structured. It would therefore be reasonable to make a GUI
for designing patterns. This could involve things such as using drop-down menus for
�eld types (which contains a list of plugins). An example of a similar idea is the
Field UI module for the Drupal CMS [27]. This functionality should be part of a
further development of PPDev. Designing a pattern can be made a lot easier, and
less error-prone, and should be taken into consideration for further development of
DPG.

8.3.7 Upgrading plugins

After DPG 2.0, and especially 2.1, many plugins have been developed. It is also very
likely that many more plugins will be developed in the future. The ever changing
architecture and API of DPG, means that often plugins need to be rewritten for the
new versions of DPG. This also means that upgrading a DPG in use, will likely mean
that content for both DPG and plugins will be corrupted. Someone using an older
version of DPG would therefore be more hesitant to upgrade to a newer version. An
upgrade method for both DPG and plugins would make the transition more smooth.
Examples of systems with solutions like this are Moodle [73] and Drupal [26].

108

8.3. Further development

8.3.8 Tighter PV and PCE integration

Because of the nature of a presentation pattern, a pure WYSIWYG (What You See
Is What You Get) [122] solution for publishers would not be preferable. That is, a
solution where the publisher can directly change the content in the presentation itself.
This is because content of entity instances are usually presented in multiple views, so
changing it one place will usually change it other places as well. However there could
still be made some improvements to how the publisher edits and views the content.
It is currently hard for a publisher to see where the content is presented. A better
solution for this could involve something as simple as a direct link for publishers in
the presentation to the actual content in the PCE.

8.3.9 Versioning of persistent data

A functionality that has become increasingly popular lately, is versioning of persistent
data. Many persistence solutions support this, and it would be a good addition to
DPG. This would include providing versioning of presentation content in DPG, and
plugin resources. A publisher could then change to previous versions of the content
whenever they want, through for example a drop-down menu in the PCE containing
the di�erent versions of entity instances.

Versioning is already supported with JackRabbit, but if the persistence layer of
DPG is changed to use Hibernate, Envers [2] can be easily used to support this
functionality. Envers implements the concept of revisions of JPA entities.

8.3.10 Support for multiple languages

Currently, support for multiple languages can be done at a pattern level, so di�erent
parameters can be sent to the plugin through the pluginConfig.xml con�guration
�le. Each plugin then has to de�ne a language parameter explicitly, and pattern
designers must feed the language value to each plugin. A better solution would be to
include the current language used in the FieldPluginBean object which is passed
to each plugin, so no con�guration is needed.

8.3.11 Extended support for simple entity �eld types

In DPG 2.1, the only simple �eld type is string, handled by the string plugin. Basic
support for �elds such as decimal numbers and booleans should also be provided.
These can be easily implemented by making new �eld plugins for them.

109

Chapter 8. Evaluation, Experiences, further development and conclusion

8.3.12 Leveraging on future versions of Spring, JPA and Hibernate

Features such as Hibernates detached Criteria objects are very popular, but to the
candidate's knowledge there is no o�cial plan for this functionality in a new JPA
speci�cation. If the past JPA speci�cations are any indication, such as the Hibernate
inspired addition of queries with Criteria objects, the popular features from other
ORMs are high priorities. A speci�cation request for JPA 2.1 is also looking to add
support for translation between JPA Criteria objects and JPQL [30], and general
improvements to both query languages.

Currently, JPA entities are loaded at the startup of the application. Plugins are
loaded generically at runtime, so this should be done for plugin entities as well.
Spring has support for dynamic scanning of packages for entities using Hibernate,
but not JPA. This feature will be provided for JPA in Spring version 3.1 [100].

Spring 3.1 and Hibernate 4.0 are both in release candidate versions, which means
their releases are right around the corner. They should de�nitely be looked at when
released, to further develop the persistence layer of DPG.

8.3.13 Improving the persistence solution in DPG

The current solution for persistence in DPG was developed in DPG 2.0. The solution
intented for use in practice was JackRabbit. The idea was to provide DPG with
some much needed transaction support, and more functions such as versioning and
caching of data. Unfortunately, this was abandoned in practical use, and in the
transition to DPG 2.1, because the technology was immature, poorly documented,
and proved to have some performance issues. Currently, a simple File System solution
for persistence is used; a solution which was only intended for development and
debugging, not for practical use.

DPG currently parses and fetches content from entire XML documents. There is no
real solution for saving or reading speci�c data directly from a database or content
repository. Examples of this are: If DPG is looking for a speci�c entity in a pattern,
it will still load the entire pattern.xml con�guration �le, and if DPG needs to
present speci�c content in a view, it will still load the entire entity-instance (which
is currently an xml document containing the content). The solution doesn't fully use
the bene�ts of the persistence implementation, which further degrades performance.

The lack of a proper persistence implementation is becoming one of DPG's biggest
problems. The Hibernate/JPA implementation of plugin resources, presented in
chapter 7, can be further extended to the rest of DPG. This should be relatively
easy, as most of the evaluation and ground work is already done. DPG loads patterns

110

8.4. Conclusion

and presentations, as well as all their corresponding components, into Java objects
when they are to be used. These objects can easily be represented as JPA entities
and persisted/fetched directly. A new JPA persistence unit should be con�gured for
DPG content, because the currently used persistence unit is con�gured speci�cally
to handle plugin resources.

8.4 Conclusion

This Master thesis presents the evaluations and work done for improving the plugin
architecture of DPG for better support of data collection and complex plugins. This
greatly increases the potential applications for DPG in Web 2.0 and onwards.

It has been a very rewarding experience for the candidate, as this Master thesis
required collaboration with other developers on a complex system which uses many
of the popular frameworks and technologies of the industry today. It has been
challenging to understand and work on such a large system, but the candidate has
now learned which methods work for him. This includes methods such as making
UML [47] diagrams, and debugging using the standard logging using Log4J [33] in
DPG, to better understand the system. This, along with the experience of using the
development methodologies and technologies, is likely to be very relevant for working
in the software industry.

Since the candidate and fellow Master student Aleksander Waage had a common
goal, a direct collaboration on parts of the thesis felt very natural. This has been
a rewarding experience, teaching about practices such as pair programming. This
thesis has been part of the JAFU project, which usually has approximately four active
Master students at any time. Working in the same o�ce on the same project means
that the students have helped each other and collaborated on parts of the work. This
has been a very good experience for the candidate, and made the development of
good implementations extra motivating. Another motivation boost has been the fact
that DPG is being used for distant learning at JAFU. The candidate has �rst hand
experience with this from his work as a teaching assistant in INF-101F, managing the
course web pages. This also helped to really see both the strengths and weaknesses
of DPG 2.1 in a real world application.

The resulting implementations in this thesis have come from constantly thinking
about making the solutions more general, and easier to use. A focus throughout the
thesis has been to split the responsibilities of plugin developers, DPG developers,
pattern developers and users of DPG, while making their work easier.

Plugin resources and persistent data are no longer an afterthought in DPG. Plugins

111

Chapter 8. Evaluation, Experiences, further development and conclusion

using the new solutions, provided from this thesis, will make applications of DPG
much more varied and powerful. Plugins can now dynamically render presentations
from multiple �elds of content, and persist large amounts of user data in an intuitive,
fast, secure and structured way.

The work on this large project has been a very positive experience. The candidate
has never worked on such a large system, or written such a large report. The freedom
to explore technologies and methodologies, and plan and execute such a large project
are de�nitely good experiences to have.

112

8.4. Conclusion

113

Bibliography

[1] Drupal. http://drupal.org/. Accessed 2011.09.20.

[2] Envers. http://www.jboss.org/envers. Accessed 2011.11.04.

[3] Hibernate. http://www.hibernate.org/. Accessed 2011.10.29.

[4] Hippo CMS. http://www.onehippo.com/. Accessed 2011.10.29.

[5] Jdom. http://www.jdom.org/. Accessed 2011.10.20.

[6] Joomla! CMS. http://www.joomla.org/. Accessed 2011.09.20.

[7] JUnit. http://www.junit.org/. Accessed 2011.10.29.

[8] m2eclipse. http://eclipse.org/m2e/. Accessed 2011.10.29.

[9] Magnolia. http://www.magnolia-cms.com/. Accessed 2011.10.29.

[10] Moodle. http://moodle.org/. Accessed 2011.09.20.

[11] MyBatis. http://mybatis.org/. Accessed 2011.10.26.

[12] Nuxeo. http://www.nuxeo.com/en. Accessed 2011.10.29.

[13] PostgreSQL. http://www.postgresql.org/. Accessed 2011.10.29.

[14] Wordpress. http://wordpress.org/. Accessed 2011.09.20.

[15] Mert Can Akkan. JPA Criteria API by samples.
http://www.altuure.com/2010/09/23/jpa-criteria-api-by-samples-part-i/.
Accessed 2011.10.29.

[16] Alfresco. Alfresco Community Edition.
http://www.alfresco.com/community/. Accessed 2011.07.10.

[17] Karianne Berg. Persistensproblematikk i Dynamic Presentation Generator.
Master's thesis, Department of Informatics, University of Bergen, 2008.

[18] Jostein Bjørge. PPDev: Et nettbasert verktøy for utvikling og validering av
presentasjonsmønstre i Dynamic Presentation Generator. Master's thesis, De-
partment of Informatics, University of Bergen, 2010.

[19] Bert Bos. Cascading Style Sheets.
http://www.w3.org/Style/CSS/. Accessed 2011.11.11.

114

http://drupal.org/
http://www.jboss.org/envers
http://www.hibernate.org/
http://www.onehippo.com/
http://www.jdom.org/
http://www.joomla.org/
http://www.junit.org/
http://eclipse.org/m2e/
http://www.magnolia-cms.com/
http://moodle.org/
http://mybatis.org/
http://www.nuxeo.com/en
http://www.postgresql.org/
http://wordpress.org/
http://www.altuure.com/2010/09/23/jpa-criteria-api-by-samples-part-i/
http://www.alfresco.com/community/
http://www.w3.org/Style/CSS/

Bibliography

[20] Mountainminds GmbH Co. EclEmma.
http://www.eclemma.org/. Accessed 2011.10.29.

[21] Stephen Connolly. How em.merge actually works.
http://javaadventure.blogspot.com/2006/06/

how-emmerge-actually-works.html. Accessed 2011.10.29.

[22] Mort Bay Consulting. Jetty.
http://jetty.codehaus.org/jetty/. Accessed 2011.10.29.

[23] Kevin Cruickshanks. Verktøy for generering av XML-baserte presentasjonar:
JPGen - Java presentasjons generator. Master's thesis, Department of Infor-
matics, University of Bergen, 2004.

[24] Day. JCR v2.0 Speci�cation: Query. http://www.day.com/specs/jcr/2.

0/6_Query.html, 2009. Accessed 2011.11.11.

[25] Mark Doliner. Cobertura.
http://cobertura.sourceforge.net/. Accessed 2011.11.17.

[26] Drupal. Updating your modules.
http://drupal.org/update/modules. Accessed 2011.11.04.

[27] Drupal. Working with content types and �elds (Drupal 7). http://drupal.
org/documentation/modules/field-ui. Accessed 2011.10.29.

[28] Yngve Espelid. Dynamic Presentation Generator. Master's thesis, Department
of Informatics, University of Bergen, 2004.

[29] David Nuescheler et al. JSR 283: Content Repository for Java Technology API
2.0 speci�cation. Java Speci�cation Request, 2009. Accessed 2011.10.29.

[30] Linda Demichiel et al. JSR 338: Java Persistence 2.1. Java Speci�cation

Request, 2011. Accessed 2011.11.04.

[31] eXist. eXist-db Open Source Native XML Database.
http://exist.sourceforge.net/. Accessed 2011.07.10.

[32] The Apache Software Foundation. JackRabbit.
http://jackrabbit.apache.org/. Accessed 2011.09.28.

[33] The Apache Software Foundation. log4j.
http://logging.apache.org/log4j/. Accessed 2011.11.11.

[34] The Apache Software Foundation. OpenJPA. http://openjpa.apache.

org/. Accessed 2011.11.15.

[35] The Apache Software Foundation. OpenJPA.
http://openjpa.apache.org/. Accessed 2011.10.29.

[36] The Apache Software Foundation. Subversion.
http://subversion.apache.org/. Accessed 2011.10.29.

115

http://www.eclemma.org/
http://javaadventure.blogspot.com/2006/06/how-emmerge-actually-works.html
http://javaadventure.blogspot.com/2006/06/how-emmerge-actually-works.html
http://jetty.codehaus.org/jetty/
http://www.day.com/specs/jcr/2.0/6_Query.html
http://www.day.com/specs/jcr/2.0/6_Query.html
http://cobertura.sourceforge.net/
http://drupal.org/update/modules
http://drupal.org/documentation/modules/field-ui
http://drupal.org/documentation/modules/field-ui
http://exist.sourceforge.net/
http://jackrabbit.apache.org/
http://logging.apache.org/log4j/
http://openjpa.apache.org/
http://openjpa.apache.org/
http://openjpa.apache.org/
http://subversion.apache.org/

Bibliography

[37] The Apache Software Foundation. The Apache Velocity Project.
http://velocity.apache.org. Accessed 2011.09.20.

[38] The Apache Software Foundation. Tomcat.
http://tomcat.apache.org/. Accessed 2011.10.29.

[39] The Eclipse Foundation. Eclipse IDE.
http://www.eclipse.org/. Accessed 2011.10.29.

[40] The Eclipse Foundation. EclipseLink. http://www.eclipse.org/

eclipselink/. Accessed 2011.11.15.

[41] Martin Fowler. InversionOfControl. http://martinfowler.com/bliki/

InversionOfControl.html. Accessed 2011.10.29.

[42] Martin Fowler. Patterns of Enterprise Application Architecture. Pearson Ed-
ucation Inc., 2003.

[43] Christian Bauer et al. Gavin King. Hibernate 3.6.3 reference documenta-
tion. http://docs.jboss.org/hibernate/core/3.6/reference/en-US/

html/. Accessed 2011.10.29.

[44] Google. Chrome. http://www.google.com/chrome. Accessed 2011.10.29.

[45] Google. Google Maps API. http://code.google.com/intl/no-NO/apis/
maps/index.html. Accessed 2011.10.29.

[46] Google. Online drawings in Google Docs.
http://www.google.com/google-d-s/drawings/. Accessed 2011.10.29.

[47] Object Management Group. Uni�ed Modeling Language (UML).
http://www.omg.org/spec/UML/. Accessed 2011.11.17.

[48] Hibernate. Introduction to the Spring IoC container and beans.
http://static.springsource.org/spring/docs/3.0.5.RELEASE/

reference/beans.html. Accessed 2011.10.29.

[49] Hibernate. Supported databases. http://community.jboss.org/wiki/

SupportedDatabases2. Accessed 2011.10.29.

[50] Hibernate. Transactions and Concurrency. http://docs.jboss.org/

hibernate/entitymanager/3.6/reference/en/html/transactions.

html. Accessed 2011.10.29.

[51] Hibernate. Working with objects. http://docs.jboss.org/hibernate/

entitymanager/3.6/reference/en/html/objectstate.html. Accessed
2011.10.29.

[52] Morten Høiland. Datainnsamling med XForms i Dynamic Presentation Gener-
ator. Master's thesis, Department of Informatics, University of Bergen, 2010.

[53] Juergen Hoeller. HibernateTemplate API. http://static.springsource.

116

http://velocity.apache.org
http://tomcat.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/
http://www.google.com/chrome
http://code.google.com/intl/no-NO/apis/maps/index.html
http://code.google.com/intl/no-NO/apis/maps/index.html
http://www.google.com/google-d-s/drawings/
http://www.omg.org/spec/UML/
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/beans.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/beans.html
http://community.jboss.org/wiki/SupportedDatabases2
http://community.jboss.org/wiki/SupportedDatabases2
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/html/transactions.html
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/html/transactions.html
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/html/transactions.html
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/html/objectstate.html
http://docs.jboss.org/hibernate/entitymanager/3.6/reference/en/html/objectstate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/hibernate3/HibernateTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/hibernate3/HibernateTemplate.html

Bibliography

org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/

hibernate3/HibernateTemplate.html. Accessed 2011.10.29.

[54] Juergen Hoeller. JpaTemplate API. http://static.springsource.org/

spring/docs/3.0.5.RELEASE/api/org/springframework/orm/jpa/

JpaTemplate.html. Accessed 2011.10.29.

[55] The hsql Development Group. HSQLDB - 100
http://hsqldb.org/. Accessed 2011.11.17.

[56] Adobe Systems Inc. Day communique.
http://www.day.com/. Accessed 2011.10.29.

[57] Sun Microsystems Inc. Core J2EE Patterns - Data Access Objects.
http://java.sun.com/blueprints/corej2eepatterns/Patterns/

DataAccessObject.html, 2007. Accessed 2011.10.20.

[58] Terracotta Inc. EhCache. http://ehcache.org/. Accessed 2011.10.29.

[59] Unicode Inc. About the unicode standard. http://unicode.org/standard/
standard.html, 2011. Accessed 2011.09.15.

[60] Bjørn Ove Ingvaldsen. Multimedia i dynamisk presentasjons generator 2.0.
Master's thesis, Department of Informatics, University of Bergen, 2008.

[61] Joomla. Basic hello world module. http://docs.joomla.org/Creating_a_
simple_module. Accessed 2011.09.20.

[62] David Nuescheler et al. JSR 170 expert group. JSR 170: Content Reposi-
tory API for Java Technology Speci�cation. Java Speci�cation Request, 2005.
Accessed 2011.10.29.

[63] Aleksander Vatle Waage Kelly Alexander Teigland Whiteley. INF219 - Per-
sistenstesting i DPG 2.0. INF219 project report, Department of Informatics,
University of Bergen, 2010.

[64] Aleksander Vatle Waage Kelly Alexander Teigland Whiteley. Project Report
- MOD250. MOD250 project report, Department of Informatics, University of
Bergen, 2010.

[65] Kristian Skønberg Løvik. Webucator 3.0 - Brukerhåndtering og aksesskontroll
for DPG 2.0. Master's thesis, Universitet i Bergen, 2008.

[66] Robert C. Martin. The Open-Closed Principle. C++ Report, 1996. Accessed
2011.11.06.

[67] Robert C. Martin. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall, 2002.

[68] Robert C. Martin. Clean Code - A Handbook of Agile Software Craftsmanship.
Prentice Hall, 2009.

117

http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/hibernate3/HibernateTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/hibernate3/HibernateTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/hibernate3/HibernateTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/jpa/JpaTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/jpa/JpaTemplate.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/api/org/springframework/orm/jpa/JpaTemplate.html
http://hsqldb.org/
http://www.day.com/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://ehcache.org/
http://unicode.org/standard/standard.html
http://unicode.org/standard/standard.html
http://docs.joomla.org/Creating_a_simple_module
http://docs.joomla.org/Creating_a_simple_module

Bibliography

[69] Carol McDonald. JPA 2.0 Concurrency and locking. http://blogs.

oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and. Ac-
cessed 2011.10.29.

[70] Carol McDonald. JPA Caching. http://weblogs.java.net/blog/

archive/2009/08/21/jpa-caching. Accessed 2011.10.29.

[71] Microsoft. Internet Explorer. http://windows.microsoft.com/en-US/

internet-explorer/products/ie/home. Accessed 2011.10.29.

[72] Microsoft. Visio.
http://office.microsoft.com/en-us/visio/. Accessed 2011.10.29.

[73] Moodle. Installing and upgrading plugin database tables. http:

//docs.moodle.org/dev/Installing_and_upgrading_plugin_

database_tables. Accessed 2011.11.05.

[74] Moodle. Moodle architecture. http://docs.moodle.org/dev/Moodle_

architecture#The_Moodle_database. Accessed 2011.09.20.

[75] Khalid A. Mughal. Presentation Patterns: Composing Web-based Presenta-
tions. Technical report, Department of Informatics, University of Bergen, 2003.

[76] ObjectDB. JPA 2 Annotations.
http://www.objectdb.com/api/java/jpa/annotations. Accessed
2011.11.04.

[77] ObjectDB. JPA Queries (JPQL / Criteria).
http://www.objectdb.com/java/jpa/query. Accessed 2011.11.04.

[78] Tobias Rusås Olsen. Interaksjon og søk i Dynamic Presentation Generator.
Master's thesis, Department of Informatics, University of Bergen, 2010.

[79] openXdata. openXdata - Documentation.
http://doc.openxdata.org/, 2011. Accessed 2011.10.29.

[80] Oracle. Data Concurrency and Consistency. http://download.oracle.

com/docs/cd/B14117_01/server.101/b10743/consist.htm. Accessed
2011.10.26.

[81] Oracle. Interface Parameter<T>. http://download.oracle.com/javaee/
6/api/javax/persistence/Parameter.html. Accessed 2011.10.29.

[82] Oracle. Java Naming and Directory Interface (JNDI). http://java.sun.

com/javase/technologies/core/jndi/index.jsp. Accessed 2011.10.29.

[83] Oracle. Java SE Technologies - Database. http://www.oracle.com/

technetwork/java/javase/jdbc/index.html. Accessed 2011.10.26.

[84] Oracle. JPQL Language Reference. http://download.oracle.com/

docs/cd/E16764_01/apirefs.1111/e13046/ejb3_langref.html. Ac-

118

http://blogs.oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and
http://blogs.oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and
http://weblogs.java.net/blog/archive/2009/08/21/jpa-caching
http://weblogs.java.net/blog/archive/2009/08/21/jpa-caching
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
http://office.microsoft.com/en-us/visio/
http://docs.moodle.org/dev/Installing_and_upgrading_plugin_database_tables
http://docs.moodle.org/dev/Installing_and_upgrading_plugin_database_tables
http://docs.moodle.org/dev/Installing_and_upgrading_plugin_database_tables
http://docs.moodle.org/dev/Moodle_architecture#The_Moodle_database
http://docs.moodle.org/dev/Moodle_architecture#The_Moodle_database
http://www.objectdb.com/api/java/jpa/annotations
http://www.objectdb.com/java/jpa/query
http://doc.openxdata.org/
http://download.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.htm
http://download.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.htm
http://download.oracle.com/javaee/6/api/javax/persistence/Parameter.html
http://download.oracle.com/javaee/6/api/javax/persistence/Parameter.html
http://java.sun.com/javase/technologies/core/jndi/index.jsp
http://java.sun.com/javase/technologies/core/jndi/index.jsp
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://download.oracle.com/docs/cd/E16764_01/apirefs.1111/e13046/ejb3_langref.html
http://download.oracle.com/docs/cd/E16764_01/apirefs.1111/e13046/ejb3_langref.html

Bibliography

cessed 2011.10.29.

[85] Oracle. Using Prepared Statements. http://download.oracle.com/

javase/tutorial/jdbc/basics/prepared.html. Accessed 2011.09.25.

[86] Tim O'Reilly. What is Web 2.0. http://oreilly.com/web2/archive/

what-is-web-20.html, 2005. Accessed 2011.11.11.

[87] OWASP. SQL Injection. https://www.owasp.org/index.php/SQL_

Injection. Accessed 2011.09.25.

[88] Vincent Partington. JPA implementation patterns: Saving
(detached) entities. http://blog.xebia.com/2009/03/23/

jpa-implementation-patterns-saving-detached-entities/. Ac-
cessed 2011.10.29.

[89] Pinaki Poddar. Dynamic, typesafe queries in JPA 2.0. http://www.ibm.com/
developerworks/java/library/j-typesafejpa/. Accessed 2011.10.29.

[90] Seema Richard. Annotation based con�guration in Spring.
http://weblogs.java.net/blog/seemarich/archive/2007/11/

annotation_base.html, 2007. Accessed 2011.10.29.

[91] Øystein Lund Rolland. Integrasjon av Orbeon Forms Designer i Dynamic
Presenation Generator. Master's thesis, Department of Informatics, University
of Bergen, 2010.

[92] Mohamed Sanualla. CamelCase Notation- Naming Convention for Pro-
gramming Languages. http://blog.sanaulla.info/2008/06/25/

camelcase-notation-naming-convention-for-programming-languages/.
Accessed 2011.11.04.

[93] Bjørn Christian Sebak. Dynamic Presentation Generator 2.0 � Utvikling av ny
dynamisk presentasjonsgenerator og presentasjonsmønsterspesi�kasjon. Mas-
ter's thesis, Department of Informatics, University of Bergen, 2008.

[94] Peder Lång Skeidsvoll. Støtte for rike klienter i DPG. Master's thesis, Depart-
ment of Informatics, University of Bergen, 2010.

[95] Edgewall Software. Trac.
http://trac.edgewall.org/. Accessed 2011.11.17.

[96] ObjectDB Software. Obtaining a JPA Database Connection. http://www.

objectdb.com/java/jpa/start/connection. Accessed 2011.10.29.

[97] Opera Software. Opera. http://www.opera.com/. Accessed 2011.10.29.

[98] Apache software foundation. JDOQL.
http://db.apache.org/jdo/jdoql.html. Accessed 2011.10.29.

[99] Spring source. Object Relational Mapping (ORM) Data Ac-

119

http://download.oracle.com/javase/tutorial/jdbc/basics/prepared.html
http://download.oracle.com/javase/tutorial/jdbc/basics/prepared.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
http://blog.xebia.com/2009/03/23/jpa-implementation-patterns-saving-detached-entities/
http://blog.xebia.com/2009/03/23/jpa-implementation-patterns-saving-detached-entities/
http://www.ibm.com/developerworks/java/library/j-typesafejpa/
http://www.ibm.com/developerworks/java/library/j-typesafejpa/
http://weblogs.java.net/blog/seemarich/archive/2007/11/annotation_base.html
http://weblogs.java.net/blog/seemarich/archive/2007/11/annotation_base.html
http://blog.sanaulla.info/2008/06/25/camelcase-notation-naming-convention-for-programming-languages/
http://blog.sanaulla.info/2008/06/25/camelcase-notation-naming-convention-for-programming-languages/
http://trac.edgewall.org/
http://www.objectdb.com/java/jpa/start/connection
http://www.objectdb.com/java/jpa/start/connection
http://www.opera.com/
http://db.apache.org/jdo/jdoql.html

Bibliography

cess. http://static.springsource.org/spring/docs/3.0.x/

spring-framework-reference/html/orm.html. Accessed 2011.10.29.

[100] Spring Source. Spring Framework 3.1 Reference Documenta-
tion. http://static.springsource.org/spring/docs/3.1.0.M1/

spring-framework-reference/html/. Accessed 2011.11.04.

[101] Spring source. Testing. http://static.springsource.org/spring/docs/
3.0.5.RELEASE/reference/testing.html#testcontext-framework.
Accessed 2011.10.29.

[102] Spring source. Transaction management.
http://static.springsource.org/spring/docs/3.0.5.RELEASE/

reference/transaction.html. Accessed 2011.10.29.

[103] Spring. Spring - Web MVC framework.
http://static.springsource.org/spring/docs/3.0.5.RELEASE/

reference/mvc.html. Accessed 2011.11.11.

[104] Spring. Spring Framework.
http://www.springsource.org/. Accessed 2011.09.20.

[105] Spring. Spring Security. http://static.springsource.org/

spring-security/site/. Accessed 2011.11.11.

[106] EJB 3.0 Expert Group Sun Microsystems. JSR 220: Enterprise JavaBeans,
version 3.0, Java Persistence API. Java Speci�cation Request, 2006. Accessed
2011.10.10.

[107] Java Persistence 2.0 Expert Group Sun Microsystems. JSR 317: Java Persis-
tence API, version 2.0. Java Speci�cation Request, 2009. Accessed 2011.10.10.

[108] Versant. db4objects. http://www.db4o.com/. Accessed 2011.07.10.

[109] Vital Wave Consulting. mHealth for Development: The Opportunity of Mobile
Technology for Healthcare in the Developing World. Technical report, UN
Foundation-Vodafone Foundation Partnership, 2009.

[110] W3C. XML Path Language (XPath).
http://www.w3.org/TR/xpath/, 1999. Accessed 2011.10.29.

[111] W3C. Extensible Markup Language (XML) 1.1.
http://www.w3.org/TR/2006/REC-xml11-20060816/, 2006. Accessed
2011.10.29.

[112] W3C. XForms 1.1.
http://www.w3.org/TR/xforms/, 2009. Accessed 2011.10.29.

[113] World Wide Web Consortium (W3C). XSL Transformations (XSLT) - Version
1.0. http://www.w3.org/TR/xslt, 1999. Accessed 2011.09.20.

120

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html
http://static.springsource.org/spring/docs/3.1.0.M1/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.1.0.M1/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/testing.html#testcontext-framework
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/testing.html#testcontext-framework
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/transaction.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/transaction.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/mvc.html
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/mvc.html
http://www.springsource.org/
http://static.springsource.org/spring-security/site/
http://static.springsource.org/spring-security/site/
http://www.db4o.com/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xslt

Bibliography

[114] Aleksander Vatle Waage. Støtte for Geodata i Dynamic Presentation Gen-
erator. Master's thesis, Department of Informatics, University of Bergen, in
preparation.

[115] Jim White. Sizing up open source java persistence. http://www.devx.com/
java/Article/33768/0/page/4, 2007. Accessed 2011.10.29.

[116] Wikibooks. Java Persistence/Querying. http://en.wikibooks.org/wiki/

Java_Persistence/Querying. Accessed 2011.10.29.

[117] WikiBooks. Java Persistence/What is new in JPA 2.0?
http://en.wikibooks.org/wiki/Java_Persistence/What_is_new_in_

JPA_2.0%3F. Accessed 2011.11.05.

[118] Wikipedia. Create, read, update and delete. http://en.wikipedia.org/

wiki/Create,_read,_update_and_delete. Accessed 2011.09.25.

[119] Wikipedia. JavaScript.
http://en.wikipedia.org/wiki/JavaScript. Accessed 2011.11.18.

[120] Wikipedia. Separation of concerns. http://en.wikipedia.org/wiki/

Separation_of_concerns. Accessed 2011.11.18.

[121] Wikipedia. SQL.
http://en.wikipedia.org/wiki/SQL. Accessed 2011.10.29.

[122] Wikipedia. WYSIWYG.
http://no.wikipedia.org/wiki/WYSIWYG, 2011. Accessed 2011.10.20.

[123] Bobby Woolf. ACID Transactions. https://www.ibm.com/

developerworks/mydeveloperworks/blogs/woolf/entry/acid_

transactions?lang=en, 2011. Accessed 2011.10.11.

[124] WordPress. Plugin API. http://codex.wordpress.org/Plugin_API. Ac-
cessed 2011.09.20.

[125] Reinier Zwitserloot and Roel Spilker. Project Lombok. http://

projectlombok.org/. Accessed 2011.11.04.

121

http://www.devx.com/java/Article/33768/0/page/4
http://www.devx.com/java/Article/33768/0/page/4
http://en.wikibooks.org/wiki/Java_Persistence/Querying
http://en.wikibooks.org/wiki/Java_Persistence/Querying
http://en.wikibooks.org/wiki/Java_Persistence/What_is_new_in_JPA_2.0%3F
http://en.wikibooks.org/wiki/Java_Persistence/What_is_new_in_JPA_2.0%3F
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/SQL
http://no.wikipedia.org/wiki/WYSIWYG
https://www.ibm.com/developerworks/mydeveloperworks/blogs/woolf/entry/acid_transactions?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/woolf/entry/acid_transactions?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/woolf/entry/acid_transactions?lang=en
http://codex.wordpress.org/Plugin_API
http://projectlombok.org/
http://projectlombok.org/

122

A
Guidelines for using the new plugin resource

interface

This chapter presents some guidelines for the speci�c use of the plugin resource solu-
tion of DPG using JPA. It is very important that plugin developers read through this
tutorial. The provided interface for plugin resources, PluginResourceJpaDao,
is presented in listing 7.3. The relevant discussions and implementation of the
PluginResourceJpaDao interface are presented in chapter 7.

A tutorial and overview of how the entity annotations and more are used, can be
found at the ObjectDB documentation [76]. It is highly recommended to go through
these tutorials to familiarize yourself with simple entity structures and setup. The
Hibernate documentation [43] and JPA speci�cation [107] can also be used.

A.1 Entities

JPA Entities are de�ned with the @Entity annotation on the class declaration. It
is important that the javax.persistence.Entity is imported and used; not
the Hibernate speci�c version. The names of entities, tables and columns can be
explicitly de�ned by the name parameter. It is important that the names of the
entities and tables contain a “pluginName_” pre�x, for example

123

Appendix A. Guidelines for using the new plugin resource interface

“pollPlugin_TableOfUsers”. Entity names are implicitly derived from the
class name, and table names are derived from the entity names, so if the entity
name is not de�ned explicitly, the class name must use a pre�x of Pluginname,
like for example PollPluginPollEntity, using UpperCamelCase [92] instead of
underscores. More about this can be read in section 7.9.

Entities can contain many types of simple �elds, as well as references to other entities.
Every entity must have a �eld marked with the @Id annotation, which speci�es the
primary key of the entity. It is highly recommended to let the id be automatically
generated using the @GeneratedValue annotation, as shown at line 8 in listing
A.1. Fields can be marked as @Transient if they should not be persisted. By
default, objects in collections are fetched lazily, which will work �ne since no entities
are detached from the persistence context.

References to other entities must be mapped with the proper annotations for their
relationship.

All persistent �elds in an entity must have corresponding setter and getter methods.
DPG uses Lombok [125], a tool which can be used to automatically generated setters
and getters for the entire class, or speci�c �elds. To do this, mark the class or �eld
with the Lombok @Setter and @Getter annotations, as shown in line 4 in listing
A.1. This removes boilerplate code and makes the entity classes very clean and easy
to read.

If the plugin requires optimistic locking of an entity (as explained in section 7.7), the
entity needs to de�ne a �eld annotated with the @Version annotation, as shown
in line 28 in listing A.1. The PluginResourceJpaDao bean will then enforce
optimistic locking of the entity automatically.

124

A.1. Entities

Listing A.1: Two entities with bidirectional references

1

2 //An abstract entity superclass containing an automatically generated
id

3 @MappedSuperclass
4 @Getter @Setter
5 public class AbstractJpaEntity {
6

7 @Id
8 @GeneratedValue(strategy = GenerationType.IDENTITY)
9 int id;

10

11 }
12

13 //An example entity class
14 @Entity
15 @Setter
16 @Getter
17 public class TestPluginTestEntity extends AbstractJpaEntity {
18

19

20 String name;
21

22 @OneToMany(mappedBy="referencingEntity",
23 cascade = CascadeType.PERSIST)
24 List<TestSubEntity> listOfReferencedEntities;
25

26 @Transient
27 String aTransientValue;
28

29 @Version
30 int version;
31

32

33 }
34

35 //The referenced example entity class
36

37 @Entity(name = "testPlugin_subEntity")
38 @Getter @Setter
39 public class TestSubEntity extends AbstractJpaEntity{
40

41 String name;
42

43 @ManyToOne
44 TestEntity referencingEntity;
45

46 }

125

Appendix A. Guidelines for using the new plugin resource interface

A.2 Queries

The PluginResourceJpaDao interface provides support for both JPQL queries
and JPA Criteria queries. It does not support saving, updating or deleting data
through the queries. These operations should be done through the saveOrUpdate()
and remove() methods.

A Query with JPQL is very similar to SQL, but working with objects and �elds
instead of tables, rows and columns. The JPQL string queries are very easy to read
and understand, and should be used for simple, static queries. Due to the possibility
of query injection attacks, it should not be used directly with inlined user controlled
data, such as the example in listing A.2. These queries can be executed using the
findByQuery() method of the PluginResourceJpaDao interface.

Listing A.2: A username can include a malicious JPQL code to gain access to addi-
tional information

1

2 String sql = "SELECT u FROM " + user + " u ";

It is recommended to use Criteria API for queries as much as possible, especially for
dynamic and secure queries. These queries are also type-safe, while JPQL is not,
and any errors will be recognized at compile time. Listing A.3 shows how a builder
for Criteria query objects is provided by the getCriteriaBuilder() method of
the PluginResourceJpaDao interface, and the query can be executed using the
findByCriteriaQuery() method.

Listing A.3: A Criteria query executed using PluginResourceJpaDao

1

2 //Get the criteria builder
3 CriteriaBuilder builder = pluginResourceJpaDao.getCriteriaBuilder();
4

5 //Build the query
6 CriteriaQuery<TestPluginTestEntity> criteria =
7 builder.createQuery(TestPluginTestEntity.class);
8 Root<TestPluginTestEntity> testEntityRoot = criteria.from(

TestPluginTestEntity.class);
9 criteria = criteria.select(testEntityRoot);

10 criteria.where(builder.equal(testEntityRoot.get("name"), "Kelly"));
11

12 //Execute query and get the list of results
13 List<TestPluginTestEntity> listOfEntities = pluginResourceJpaDao.

findByCriteriaQuery(criteria);

More about how these queries can be structured can be found in the ObjectDB JPA
query documentation [77], the Oracle JPQL language reference [84], Criteria tutorials

126

A.3. Saving, updating and removing entities

by Mert Can Akkan [15] and IBM [89], as well as the JPA speci�cation [107].

The query implementation of the PluginResourceJpaDao interface is presented
in section 7.5.

A.3 Saving, updating and removing entities

If the id of an entity is generated manually, the plugin needs to make sure that it
does not make a new entity with the same id as a currently persisted one, because
the saveOrUpdate() method does not merge these entities. The plugin should
instead retrieve the entity object through the PluginResourceJpaDao bean, and
update its values before calling the saveOrUpdate() method.

The basic operations on an entity, which are used by the DAO implementation are the
JPA persist() and remove() operations. These operations can be con�gured to
cascade to referenced entities as well. This con�guration must be thought through,
as lingering references can be set to null, if an operation was cascaded from a
referencing entity. This is further explained in section 7.6.

A.4 Structuring resources

Plugins get access to the current page, view, pattern, presentation and username
through the provided FieldPluginBean bean. This can be used by plugins to
structure their data if needed.

127

	Introduction
	Background
	Motivation
	Goals
	Overall goal
	Subgoals

	Development methodologies
	Development tools
	Structure of thesis

	Background and Problem Description
	Web Content Management System
	Presentation Patterns
	Presentation Pattern Specification
	Presentation patterns and presentations
	The structure of a presentation pattern

	Dynamic Presentation Generator
	Lobby
	Presentation Viewer (PV)
	Presentation Content Editor (PCE)
	Presentation Manager (PM)

	Problem Description
	The plugin architecture of DPG
	Resource management in DPG's plugin architecture
	Plugin persistence API
	Technologies for persisting large amounts of end-user data
	Guidelines for the new solution

	Evaluation of DPG's plugin architecture and entity list handling
	The plugin architecture of DPG
	The Plugin Interface
	Making a plugin
	The Plugin Manager
	Entity Field Types

	Weaknesses of the current plugin architecture
	Multiple Field Input Plugins
	Handling multiple entity instances in one view
	Lists and subentities

	Improvements of DPG's plugin architecture
	Multiple field plugins
	Revert to a similar solution to DPG 2.0
	Extend the existing FieldPlugin interface
	Refer to a plugin with a new attribute in the pattern
	Plugin defined pattern structure
	Final solution and implementation
	Superficial changes to DPG
	Changes to the plugin interface
	Changes to the DPG architecture

	Multiple entity instances in one view
	View composition plugin
	Single view list
	Final solution
	Changes to the presentation pattern specification
	Changes to the DPG architecture

	Proposed solutions for plugin resource management in DPG
	Current solution
	Goals for a new plugin resource solution
	Proposed solutions
	Improvements in the current API
	Direct access through a standardized query language
	Indirect access through stored procedures or an API

	Evaluation of proposed solutions

	Evaluation of data models and persistence technologies for plugin resources in DPG
	Current data model
	Criteria for persistence technology
	Uniform solution
	Transaction support
	Performance
	Support for caching
	Maturity and documentation
	Portability
	Character encoding of data
	Spring integration
	Follows a standard
	Backwards Compatibility
	Support for versioning of data

	Alternative persistence technologies
	Relational
	MyBatis

	Hierarchical
	JackRabbit

	Object Oriented
	Hibernate

	Evaluation of proposed technologies and conclusion

	Implementing new plugin resource management in DPG
	Goals and challenges
	The Hibernate and JPA persistence context
	Using Hibernate/JPA and the Spring framework
	Native Hibernate vs standard JPA implementation
	The JPA implementation

	Entity management
	Query language
	New plugin resource interface
	Transaction management and locking
	Caching
	Separation of plugin data
	Integration testing
	Evaluation of implementation

	Evaluation, Experiences, further development and conclusion
	Evaluation of goals
	Experiences
	Development process and methodology
	Technologies

	Further development
	Plugins reacting to events in DPG
	Communication between plugins
	New functionality in PCE
	Further abstract the plugins from the pattern designer
	Abstract plugins from the DPG core
	Further development of PPDev
	Upgrading plugins
	Tighter PV and PCE integration
	Versioning of persistent data
	Support for multiple languages
	Extended support for simple entity field types
	Leveraging on future versions of Spring, JPA and Hibernate
	Improving the persistence solution in DPG

	Conclusion

	Guidelines for using the new plugin resource interface
	Entities
	Queries
	Saving, updating and removing entities
	Structuring resources

