

Optimized renewable energy supply for a sustainable Recircuating Aquaculture System (RAS)

Gerard Ayuso Virgili Department of Mechanical and Marine Engineering (Bergen) PhD programme in Computer Science.

The project and work packages

Mass balance and energy optimisation in recirculating aquaculture systems (RAS) with special focus on diurnal variations in water quality (RAS-EN)

WP1: Diurnal variations in mass and energy flows with respect to water quality parameters.

WP2: Optimised renewable energy supply for a sustainable RAS.

WP3: Sludge and sustainable energy.

- > Leila (ISKB) WP1 and WP3
- Gerard (IMM)WP2 and WP3

WP2 supervisors:

> Norbert Lümmen (IMM) / David Lande-Sudall (IMM) / Kjell Eivind Frøysa (IDER)

The energy system

- Model and simulate an energy system with wind (a), solar (b) and wave (c) energy harvesting.
- Supply the energy demand of a RAS (d).
- Use batteries (e), hydrogen (f) and biogas (g) to store energy and balance the grid.

RAS in AspenHYSYS

V

RAS energy demand

a) Constant water flow
Oxygen cones pump adjusted to oxygen need.
205 kW – 290 kW (weeks 1 to 15)

a) Adjusted water flow

Blower and RAS pumps have much reduced demand at the start.

Peak demand in b) is higher than a) justified to maintain water quality.

172 kW - 369 kW (weeks 1 to 15)

Overview of energy harvesting system

		Power capacity range
Wind turbine		0 – 2 MW
Photovoltaic panels	Configuration S	0 – 848 kW
	Configuration EW	0 – 920 kW
Wave energy converter	M4-132	-

- Hourly data for wind speed, solar irradiation and ocean conditions is gathered between 2012 and 2021.
- > Models for scalable wind and solar energy harvest devices are ready.
- > Preliminary results are generated for three WEC sizes.

Wind speed profile

- 7 hourly wind speed datapoints at different heights (in m):
 10, 20, 50, 100, 250, 500 and 750.
- > Deaves and Harris model for fitting wind speed profile to data between 2012 and 2021.
- > Interpolated wind speed at wind turbine hub height.

Parameter	Description	Value
Z_d	Zero-plane displacement	6 m
<i>z</i> ₀	Surface roughness	0.013 m
κ	Von Kármán constant	0.41
h	Atmospheric boundary layer height	300 m
A _{swept} ,rated	Vestas 90-2.0 MW swept area	6362 m²
$v_{ m rated}$	Vestas 90-2.0 MW rated wind speed	11.5 m/s
P _{rated} ,WT	Vestas 90-2.0 MW power rating	2 MW
$v_{\rm cut-in}$	Vestas 90-2.0 MW cut-in wind speed	4 m/s
$v_{\rm cut-out}$	Vestas 90-2.0 MW cut-out wind speed	25 m/s
$v_{\rm re-cut-in}$	Vestas 90-2.0 MW re-cut-in wind speed	23 m/s
$ ho_{ m air}$	Air density	1.2 kg/m ³

Power curves

- Wind turbine dimensions are adjusted > to create power curves at different scale levels.
- Wind power capacity is simulated > between 0 and 2 MW.

2.5

2

1.5

Scale factor: 1

Scale factor: 0.8

Scale factor: 0.6 Scale factor: 0.4

Scale factor: 0.2

Photovoltaic panel configurations

Shade modelling

> PV panel shaded fraction is calculated from the shadow length on the PV panel surface longitudinal to its orientation.

Parameter	Description	Value
$S_{\rm PVP}$	Separation between photovoltaic panel rows	0.25 m
ϕ	Latitude	1.043 rad (59.77°)
β	Photovoltaic panel tilt angle	0.262 rad (15°)
γ_{PVP}	Photovoltaic panels azimuth angle with reference due south	S: -0.113 rad (-6.5°)
		E: -1.68 rad (-96.5°)
		W: 1.46 rad (83.5°)
α	Ground albedo	0.2
$w_{\rm PVP}$	Photovoltaic panel width	1.016 m
$A_{\rm PVP}$	Photovoltaic panel surface area	1.73 m ²
$\eta_{ m PVP}$	Photovoltaic panel efficiency	0.22
$P_{\rm rated,PVP}$	Photovoltaic panel power rating	380 W

Definition of a hybrid renewable energy system

Hourly harvested and demanded energy (MWh/h)

- > Example of a power capacity signature for a hybrid system simulated for 1 year.
- > Defined as 1 / 0.75 / 0 (*wind / solar / wave*) power capacities.

Minimum necessary energy storage capacity

- > Simulate the hybrid energy system to calculate the energy storage surplus or deficit, then adjust the installed battery capacity accordingly on the next iteration.
- > Find the minimum necessary energy storage that still ensures energy supply to the RAS.

Sample results – no backup generator

- > Simulated RES for 2012
- > Combinations of:
 - > Wind = 1 MW, 1.5 MW, 2 MW
 - > Solar = 0.25 MW, 0.5 MW, 0.75 MW
- > Battery SoC limits between 0.1 and 0.9
- > No H_2 storage.
- > Storage requirements for each case (MWh):

Wind\Solar	0.25 MW	0.5 MW	0.75 MW
1 MW	284	137	86
1.5 MW	95	53	35
2 MW	50	35	31

Sample results – 1% of yearly demand covered by backup

- > Simulated RES for 2012
- > Combinations of:
 - > Wind = 1 MW, 1.5 MW, 2 MW
 - > Solar = 0.25 MW, 0.5 MW, 0.75 MW
- > Battery SoC limits between 0.1 and 0.9
- > No H_2 storage.
- > Storage requirements for each case (MWh):

Wind\Solar	0.25 MW	0.5 MW	0.75 MW
1 MW	257	110	63
1.5 MW	68	36	25
2 MW	35	23	19

Creation of hybrid energy systems

Plan going forward

- > First step is to simulate combinations of power capacities of wind, solar and wave energy and find the minimum required energy storage.
- > Repeat the simulations with different storage capacities of H_2 and a backup system. Study the effect of H_2 / backup capacities on the minimum required energy storage.

- > Implement cost functions on all components to optimize the energy system:
 - > wind, solar and wave power capacities.
 - > battery and H_2 storage capacities.
 - > fuel cell and electrolyzer power capacities

Contact

- > gav@hvl.no
- +47 55 58 71 25
- Campus Bergen
 Fabrikkgaten 5 R202-12

Thanks for listening!

Questions?

