

Bergen Energy Lab Talk
Layout and Yaw Optimisation of an Offshore Wind Farm

Daniel Sukhman

Motivation Performance Optimisation of Offshore Wind Farms

- Planned expansion of offshore wind power by 61% by 2030 in Germany
- \circ $\,$ Power losses due to wake effects within wind farms
- Wake effects can be modelled analytically
- Wind farms can be optimised with respect to turbine wakes
 - Optimised turbine positioning
 - Innovative control concepts such as yaw angle control

How can wind farm performance be increased through optimised turbine positions and yaw angles?

Wind farm Horns Rev 1. [Vattenfall]

Slide 1

Agenda Performance Pptimisation of Offshore Wind Farms

- Wake effects within wind farms
- Analytical modelling of wake effects

- \circ $\,$ Validation of proposed tool
- Insight into parameter study

- Optimised wind farm
 - o Layout
 - Yaw angles

Wake Effects Power Losses Within a Wind Farm

Power loss within one turbine row [1, Barthelmie et al.]

- Measured performance drop greatest from first to second row
- Subsequently asymptotic course
- Overlapping of several wakes hardly leads to further losses

Braunschweig

First drop in performance must be reduced

Slide 3

Wake Effects Proposals

Wake Effects Analytical Modelling

In- and output parameters of the wake model [3, Ishihara et al.]

Wake Effects Analytical Modelling

In- and output parameters of the wake model [3, Ishihara et al.]

Validation Reference Plant

Top view on the Wind Farm: Horns Rev 1 [4, Carsten Ingemann /IND]

Layout Horns Rev 1 based on [5, Qian et al.]

Wind farm with extensive performance data and comparative studies

Technische Universität Braunschweig Slide 7

Validation First Main Wind Direction at $\alpha = 270^{\circ}$

- Power normalised to the yield of the first turbine row
- WAsP planning software as industrial standard
- Deviations in comparison to original data of Qian & Ishihara

Modelled and measured power of on turbine row [2, Sukhman et al., submitted to: J. Phys.: Conf. Ser. (2023)]

Slide 8

Study on Wind Farm Performance Parameters

Axial Spacing Δx & Turbulence Intensity TI_a

Impact of Δx and TI_a on the total power [2, Sukhman et al.]

Schematic illustration of the 3x3 wind farm

Avoid first shadowing

If unavoidable: \cap Increase axial distance

Diagonal alignment of the turbines to wind direction

Technische Universität

Braunschweig

S Institut für Flugantriebe und Strömungsmaschinen

IFA

Slide 10

• Avoid first shadowing

 If unavoidable: Increase axial distance

Diagonal alignment of the turbines to wind direction

Slide 11

S Institut für Flugantriebe und Strömungsmaschinen

IFΔ

• Avoid first shadowing

 If unavoidable: Increase axial distance

Diagonal alignment of the turbines to wind direction

Study on Wind Farm Performance Parameters

Yaw Angle γ_1 of Turbine No. 1

Slide 14

Wind Farm Optimisation Overview

1. Layout Optimisation

2. Yaw Optimisation

Slide 15

Wind Farm Layout Optimisation Overview

- Gradient-based extreme value search function *fmincon*
- Reference Layout: Horns Rev 1
- Ambient Data • $u_0 = 10 \frac{m}{s}$
 - $\circ TI_a = 6,4\%$
- Optimisation carried out for all three main wind directions

Slide 16

Wind Farm Layout Optimisation Structure

- Gradient-based extreme value search function *fmincon*
- Reference Layout: Horns Rev 1
- Ambient Data
 - $\circ \quad u_0 = 10 \frac{m}{s}$ $\circ \quad TI_a = 6,4\%$
- Optimisation carried out for all three main wind directions
- o Definition of position boundaries

Boundaries of turbine positions [2, Sukhman et al.]

Wind Farm Layout Optimisation First Main Wind Diraction $\alpha = 270^{\circ}$

Clearly visible, diagonal alignment of the turbines in relation to the inflow

Optimal layout for main wind direction. Left schematic layout, right velocity distribution. [2, Sukhman et al.]

IFA

Institut für Flugantriebe und Strömungsmaschinen

Slide 18

Wind Farm Layout Optimisation First Main Wind Diraction $\alpha = 270^{\circ}$, Enlarged View

Clearly visible, diagonal alignment of the turbines in relation to the inflow

Section of the optimal layout. Left schematic layout, right velocity distribution.

Slide 19

Wind Farm Layout Optimisation Results Layout Optimisation First Main Wind Direction

- Clear increase in performance from an aerodynamic point of view
- \circ Visible dependence on wind direction α

Optimised for α =270°

Wind Farm Optimisation Overview

1. Layout Optimisation

2. Yaw Optimisation

Slide 21

Wind Farm Yaw Angle Optimisation Retrospect and Structure

- Wake steering potential off main wind directions
- Layout: Horns Rev 1
- \circ Inclined inflow by $\Delta \alpha = 5^{\circ}$

Wind Farm Yaw Angle Optimisation Results for Inclinded Inflow $\alpha = 275^{\circ}$

- Power increase possible with yaw angle control for inclined inflow
- Consideration of the wind direction absolutely necessary
- Structural mechanics not considered

Optimised for wind direction $\alpha = 275^{\circ}$		
$P_{ m reference} \ 196{,}317{ m MW}$	$P_{ m optimised}$ 209,500 MW	$\Delta P_{ m total} \ +6,29\%$

Predicted performance increase through yaw angle optimisation [2, Sukhman et al.]

Slide 23

Conclusion & Ongoing Work

- Development of an analytical computation tool in MATLAB 0
 - Implementation of the Wake Model of Qian & Ishihara (2020)
- Validation using existing data on the Horns Rev 1 wind farm Ο
 - Good agreement with measured data compared to the benchmark model 0
 - Potential for expansion of the model 0

Slide 24

Conclusion & Ongoing Work

- Development of an analytical computation tool in MATLAB
 - Implementation of the Wake Model of Qian & Ishihara (2020)
- $\circ~$ Validation using existing data on the Horns Rev 1 wind farm
 - o Good agreement with measured data compared to the benchmark model
 - Potential for expansion of the model

Offshore wind turbines [6, EDF Renewables]

Institut für Flugantriebe und Strömungsmaschinen

Slide 25

- Yield increase through layout optimisation shows high potential
- Yaw angle control interesting when operating off main wind directions
- Factors to include:

wind direction

turbine loads

maintenance & costs

Offshore wind turbines [6, EDF Renewables]

Thank you!

Horns Rev 1 [Vattenfall]

Image Sources

- [1] Barthelmie, R. J., Pryor, S. C., Frandsen, S. T. et al.: "Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms". In: Journal of Atmospheric and Oceanic Technology 27(8) (2010), 1302–1317.
- [2] Sukhman, D., Lück, S., Göing, J. et al.: "Layout and yaw optimisation of an offshore wind farm through analytical modelling". Submitted to: Journal of Physics: Conference Series (2023).
- [3] Ishihara, T. & Qian, G.-W.: "A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects". In: Journal of Wind Engineering and Industrial Aerodynamics 177 (2018), 275–292.

[4] <u>https://energiwatch.dk/Energinyt/Renewables/article13013824.ece</u>, last visited 06.03.2023.

- [5] Qian, G.-W. & Ishihara, T.: "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity". In: Energy 220 (2020), 119680.
- [6] https://www.edf-renouvelables.com/en/project-development/offshore-wind/, last visited 17.07.2022

[7] Zong, H. & Porté-Agel F.: "A momentum-conserving wake superposition method for wind farm power prediction". In: Journal of Fluid Mechanics 889 (2020), A8.

[8] Braunbehrens, R. & Segalini, A.: "A statistical model for wake meandering behind wind turbines". In: Journal of Wind Engineering & Industrial Aerodynamics 193 (2019), 103954

