Re-inventing the European power market

The European market processes

Objective of the European power market: Maximize the welfare economic surplus constrained by grid security and market balance \rightarrow Market equilibrium (Net Positions & Prices)

Statnett

Capacity Calculation: From complexity to simplicity

The physical world

Complexity	Simplicity			
Detailed grid model (CGM)	Detailed grid Nodal model (CGM) pricing		NTC	

Capacity calculation is the process of translating the complex physical grid into a simplified form that can be understood and applied by the power exchange

Providing grid constraints to the market platforms

The Net Transfer Capacity (NTC) model

- Secure grid operation requires no overloads to be allowed
- Physical flows follow the path of least resistance:
 - > Cannot allow bi-lateral trades at physical capacity
 - > Limitations are expressed by NTCs on each border
 - > Each bidding zone is limited to a max export and import
 - > The distribution of NTCs on borders is an operational choice
- In general, the NTC market constraints is:
 - $> NP_i \le \sum_j NTC_{ij}$ $> NP_i \ge \sum_j NTC_{ii}$

The Flow Based (FB) model

- Secure grid operation requires no overloads to be allowed
- Physical flows follow the path of least resistance
 - Limitations are expressed by PTDFs and RAMs
 - ➢ Each bi-lateral trade will cause a known flow on all Critical Network Elements (CNEC) → PTDFs
 - \geq Allow flows at physical capacity for all CNECs \rightarrow RAM
 - Each bidding zone is limited by the physical capacity for import and export
 - > PTDFs and RAM are uniquely defined by the grid model
- > In general, the NTC market constraints is:

> PTDF * NP ≤ RAM

FB allows for net positions that cannot be obtained in NTC

> All obtainable net positions in NTC can be obtained in FB

Price properties in FB and NTC

NTC:
$$p_i = \lambda + \tau_i^{imp} - \tau_i^{exp}$$

- 1. Equal prices in all bidding zones when no constraints are limiting
- 2. A bidding zone cannot be import and export limited at the same time Only one positive shadow-cost
- 3. Higher prices in import limited bidding zones
- 4. Lower prices in export limited bidding zones

FB: $p_i = \lambda - \sum_n \rho_n^* PTDF_i^n$

- 1. Equal prices when no grid constraints are limiting
- 2. Lower prices in bidding zones who increases flows on limiting grid elements
- 3. Higher prices in bidding zones who relieves flows on limiting grid elements
- 4. All zonal prices becomes unique if one or more CNEs are congested

Notations:	In general:
λ = Dual variable on the energy balance constraint (Price in the slack zone)	Value of the dual variable = Incremental increase in the objective
τ_i^{imp} = Dual variable/shadow cost for the import constraint in NTC	function by an incremental relaxation of the constraint
τ_i^{Exp} = Dual variable/shadow cost for the export constraint in NTC	
ρ_n = Dual variable/shadow cost for the grid constraints in FB	Dual variable ≥ 0
	[Dual variable] * [Distance from Constraint] = 0

Small example of a FB market coupling result

CNEC	RAM	Budområde A	Budområde B	Budområde C (Slack-sone)	ΣPTDF * NP	Skyggepris
NP		-946	1973	-1027		
Pris		44,76	38,95	50,7 (λ)		
A → B	1000 MW	33%	- 33%	0%	-973	ρ ₁ = 0
B→C	1000 MW	33%	67%	0%	1000 MW	$\rho_2 = 17,43$
$A \rightarrow C$	1000 MW	67%	33%	0%	27 MW	$ \rho_{3} = 0 $

Area A Area B Area C 200 200 200 150 150 150 100 100 100 50 50 50 200 520 780 -100 -100 -100 ----- PE PS PF PS — PF PS

• Alle markedspriser er gitt av skyggepriser:

 $p_i = \lambda - \Sigma \rho * PTDF_i$

- λ = Den samfunnsøkonomiske kostnaden ved å levere kraft i slack-sonen
- ρ = Den samfunnsøkonomiske verdien av en ekstra MW RAM for en CNEC
- > Alle prisområder har lik pris dersom ingen begrensninger er bindende
- Alle prisområder har unike PTDFer og alle områder får derfor forskjellig pris dersom det finnes en flaskehals i systemet
- Dette gir oss mulighet til å vurdere den samfunnsøkonomiske verdien av kapasitet på våre snitt
- FB kan gi flyt fra høy til lav pris når handel mellom to prisområder genererer en positiv samfunnsøkonomisk verdi i form av reduserte nettkostnader:

$$p_i - p_e = \Sigma \rho * (PTDF_e - PTDF_i)$$

Statnett

The balancing market

- Stakeholders (Balancing Responsible Parties BRPs) may manage their own imbalances in the intraday market
- The TSOs will manage real time imbalances in the balancing markets
 - If BRPs is not able to balance their positions in the Intraday market, TSOs will take over and manage the imbalances in the balancing markets
 - The BRPs will be invoiced for this service
- The balancing market is meant for:
 - 1. Managing real time frequency deviations/maintain constant frequency
 - Upper threshold 50,1 Hz Lower threshold 49,9 Hz
 - > 50 Hz \rightarrow Excess generation (reduce generation/increase consumption)
 - < 50 Hz \rightarrow Excess consumption (reduce consumption/increase generation)
 - 2. Manage real time overloads on grid components (redispatch/countertrade)

Balancing activities

Balancing capacity market (procurement of balancing reserves)

Statnett

Balancing market - Activation

Imbalance-cost is forwarded to the BRPs

FCR activations is not part of the imbalance-price while aFRR and mFRR is relevant for the imbalance-price

Normally, activations are done within the markets. However there is also a possibility for the TSOs to apply direct mFRR activations between the markets

