- E-postMali.Rosnes@uib.no
- Telefon+47 55 58 82 60
- BesøksadresseAllégaten 41Realfagbygget5007 BergenRom4045b
- PostadressePostboks 78035020 Bergen
Bridging the catalysis gap
My research is focused on briding the so-called catalysis gap, where I aim to combine the best of homogeneous and heterogenenous catalysis. Specifically I aim to produce homogeneous catalytic systems tethered to polyoxometalates (POMs), where the high activity and selectivity of homogeneous catalysis is combined with POM-based easy recovery and recycling.
Polyoxometalates (POMs) are metal-oxide clusters of early transition metals. POMs have seemingly endless structural versatility, with a wide range of physical properties. POMs have the ability to form structures varying in size from the nano- to the micro-meter scale. POM chemistry is an emerging area that promises the development of sophisticated materials and devices. The applications of POMs are based on their unique properties, and potential applications include medicine, coatings, sensors, catalysts and electrochemistry to mention a few.
To successfully utilise the great potential associated with POMs we aim to synthesise novel materials with specific applications in mind. One particularly interesting application is to use POMs as catalysts in the conversion of carbon dioxide to make value-added chemicals.
My research project "Recyclable Catalysts for Sustainable Polymers from CO2 and Bio-based Epoxides" (ReCat4Polymer), is funded as a Starting Grant by the Trond Mohn Foundation and the University of Bergen. ReCat4Polymer are investigating the potential for using POMs as catalysts bridging the gap between homogeneous and hetereogeneous catalysis, for sustainable production of polymers from CO2 and bio-based epoxides.
Courses
KJEM120 - Grunnstoffenes kjemi
NANO100 - Perspektiv i Nanovitskap og -teknologi
NANO300 - Seminar i Nanovitskap
MSc and BSc projects
MSc and BSc projects are available. Please contact me if you are interested.
20. M. Oregui-Bengeochea, N. Miletić, W. Hao, F. Björnerbäck, M. H. Rosnes, J. Saiz Garitaonandia, N. Hedin, P. Arias, T. Barth, ACS Sustain. Chem. Eng., 2017, 5, 11226-11237; High-performance magnetic activated carbon from solid waste from lignin conversion processes. Part II: Their use as NiMo catalyst supports for lignin conversion.
19. M. H. Rosnes, D. Sheptyakov, A. Franz, M. Frontzek, Pascal D. C. Dietzel, P. A. Georgiev, Phys. Chem. Chem. Phys., 2017, 19, 26346-26357; On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal-organic frameworks.
18. M. H. Rosnes, Naturen, 2017, 141, 212-218; Metall-organiske materialer med mange muligheter.
17. B. Pato-Doldán, M. H. Rosnes, P. D. C. Dietzel, ChemSusChem 2017, 10, 1710-1719; An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPO-27-M.
16. M. H. Rosnes, M. Opitz, M. Frontzek, W. Lohstroh, J. P. Embs, P. A. Georgiev, P. D. C. Dietzel, J. Mater. Chem. A, 2015, 3, 4827-4839; Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution.
15. J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein J. Nanotech., 2013, 4, 285-291; Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. A video accompanying this article is available online on Beilstein TV.
14. V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein J. Org., 2013, 9, 951-959; 3D-printed devices for continuous-flow organic chemistry. A video accompanying this article is available online on Beilstein TV.
13. M. H. Rosnes, C. Musumeci, C. Yvon, A. Macdonell, C. P. Pradeep, C. Sartorio, D.-L. Long, B. Pignataro, L. Cronin, Small, 2013, 9, 2316-2324; Exploring the Interplay Between Ligand Derivatisation and Cation Type in the Assembly of Hybrid Polyoxometalate Mn-Andersons.
12. M. Hutin, M. H. Rosnes, D.-L. Long, L. Cronin, Elsevier, 2012; Polyoxometalates: Synthesis and Structure – From Building Blocks to Emergent Materials in Comprehensive Inorganic Chemistry II.
11. P. J. Kitson, M. H. Rosnes, V. Sans, Vincenza Dragone, L. Cronin, Lab Chip, 2012, 12, 3267-3271; Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices.
10. M. H. Rosnes, Carine Yvon, D.-L. Long, L. Cronin, Dalton Trans., 2012, 41, 10071-10079; Mapping the Synthesis of Low Nuclearity Polyoxometalates From Octamolybdates to Mn-Anderson Clusters.
9. P. Yin, C. P. Pradeep, B. Zhang, F.-Y. Li, C. Lydon, M. H. Rosnes, D.-L. Long, E. Bitterlich, L. Xu, L. Cronin, T. Liu, Chem. Eur. J., 2012, 18, 8157-5162; Controllable Self-Assembly of Organic–Inorganic Amphiphiles Containing Dawson Polyoxometalate Clusters.
8. C. Musumeci, M. H. Rosnes, F. Giannazzo, M. D. Symes, L. Cronin, B. Pignataro, ACS Nano, 2011, 5, 9992-9999; Smart High-κ Nanodielectrics Using Solid Supported Polyoxometalate-Rich Nanostructures.
7. J. Thiel, D. Yang, M. H. Rosnes, X. Liu, C. Yvon, S. E. Kelly, Y.- F. Song, D.- L. Long, L. Cronin, Angew. Chem. Int. Ed., 2011, 50, 8871-8875; Observing the Hierarchical Self-Assembly and Architectural Bistability of Hybrid Molecular Metal Oxides Using Ion-Mobility Mass Spectrometry.
6. C. Musumeci, A. Luzio, C. P. Pradeep, H. N. Miras, M. H. Rosnes, Y.- F. Song, D. - L. Long, L. Cronin, B. Pignataro, J. Phys. Chem. C, 2011, 115, 4446-4455; Programmable Surface Architectures Derived from Hybrid Polyoxometalate-Based Clusters.
5. E. F. Wilson, H. N. Miras, M. H. Rosnes, L. Cronin, Angew. Chem., Int. Ed., 2011, 50, 3720-3724; Real-Time Observation of the Self-Assembly of Hybrid Polyoxometalates Using Mass Spectrometry.
4. M. H. Rosnes, C. Musumeci, C. P. Pradeep, J. S. Mathieson, D.-L. Long, Y.-F. Song, B. Pignataro, R. Cogdell, and L. Cronin, J. Am. Chem. Soc., 2010, 132, 15490-15492; Assembly of Modular Asymmetric Organic−Inorganic Polyoxometalate Hybrids into Anisotropic Nanostructures.
3. J. Thiel, C. Ritchie, H. N. Miras, C. Streb, S. G. Mitchell, T. Boyd, M. N. C. Ochoa, M. H. Rosnes, J. McIver, D.-L. Long, L. Cronin, Angew. Chem. Int. Ed., 2010, 49, 6984-6988; Modular Inorganic Polyoxometalate Frameworks Showing Emergent Properties: Redox Alloys.
2. G. Seeber, G. J. T. Cooper, G. N. Newton, M. H. Rosnes, D.-L. Long, B. M. Kariuki, P. Kögerler, L. Cronin, Chem. Sci., 2010, 1, 62-67; Following the self-assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry.
1. G. J. T. Cooper, G. N. Newton, D.-L. Long, P. Kögerler, M. H. Rosnes, M. Keller, L. Cronin, Inorg. Chem., 2009, 48, 1097-1104; Exploring a Series of Isostructural Dodecanuclear Mixed Ni:Co Clusters: Toward the Control of Elemental Composition Using pH and Stoichiometry.
- (2022). Enhancing silicon solar cell performance using aluminum nanoparticles.
- (2022). Enhancing silicon solar cell performance using aluminum nanoparticles.
- (2021). Enhancing Solar Cell Efficiency Using Nanotechnology.
- (2020). Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous and Mesoporous Materials. 1-12.
- (2020). Carbon dioxide induced structural phase transition in metal-organic frameworks CPO-27. CrysteEngComm. 4353-4358.
- (2020). Adsorption of greenhouse gas N2O on microporous CPO-27 materials.
- (2019). Morphology control in modulated synthesis of metal-organic framework CPO-27. Microporous and Mesoporous Materials. 207-213.
- (2019). Electrospray Mass Spectrometry Investigation into the Formation of CPO-27. Crystal Growth & Design. 2089-2096.
- (2019). Catalysts for the Conversion of Biorenewable Epoxides into Polycarbonates.
- (2018). Open Metal Sites in the Metal-Organic Framework CPO-27-Cu: Detection of Regular and Defect Copper Species by CO and NO Probe Molecules. Journal of Physical Chemistry C. 17238-17249.
- (2017). On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal-organic frameworks. Physical Chemistry, Chemical Physics - PCCP. 26346-26357.
- (2017). Low-temperature adsorption of CO and NO on CPO-27-Cu (MOF-74-Cu).
- (2017). High-performance magnetic activated carbon from solid waste from lignin conversion processes. 2. Their use as NiMo catalyst supports for lignin conversion. ACS Sustainable Chemistry and Engineering. 11226-11237.
- (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
- (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
- (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
- (2017). An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPO-27-M. ChemSusChem. 1710-1719.
- (2017). A comprehensive structural study of the CO2 adsorption process in the CPO-27 family.
- (2016). Shining light on the CO2 adsorption process in metal-organic framework CPO-27-M.
- (2016). Shining light on the CO2 adsorption process in metal-organic framework CPO-27-M.
- (2016). In-depth investigations of the formation of metal-organic framework (MOF) materials.
- (2016). In-depth investigations of the formation of functional materials.
- (2016). ESI-MS investigations of the formation of metal-organic framework (MOF) materials.
- (2016). About the Nobel Prize in Chemistry 2016.
- (2016). A Comprehensive Structural Study of the CO2 Adsorption Process in the CPO-27 Family.