• E-mailSelina.Vage@uib.no
  • Phone+47 55 58 44 57
  • Visitor Address
    Thormøhlens gate 53 A/B
  • Postal Address
    Postboks 7803
    5020 Bergen

I am interested in microbial ecology and evolution, theoretical biology and complex systems. 

Currently I am working on a theory that explains consistent scaling between biomass, productivity, and predator-prey ratios in diverse environments. In this theory, observed patterns arise from density dependent selection of traits that are governed by trade-offs between resource uptake affinity and resistance to top-down control.

I am also using idealized models to understand what determines success in the microbial part of the pelagic food web. Pelagic SAR11 bacteria are the most abundant organisms on Earth, and our research indicates that a combination of good competitive and defensive abilities among different SAR11 strains seems key to success, rather than an extreme investment into either competition or defense. Besides virus-host interactions, I have also a special interest in mixotrophic organisms combining different foraging modes and understanding when mixotrophy is a successful strategy in the ocean. Our work indicates that mixotrophs can under a variety of conditions successfully coexist with organisms specializing in a single foraging strategy, even at high costs of mixotrophy relative to specialized foraging. These theoretical results confirm findings of highly abundant and widespread mixotrophs in marine environments.

Another field of interest are physical-biological interactions in marine environments, in particular how microbial and other planktonic communities in polar regions are shaped by oceanic currents, water mass distributions and seasonal dynamics.

Teaching in the following subjects:

  • Evolutionary Biology
  • Marine Microbial Ecology
  • Marine Biodiversity
  • General Microbiology
  • Scientific Writing/Research methods

Google Scholar Profile Selina Våge 

Articles in revision:

  • Talmy D, Våge S, Cael BB, Follows M (in revision, Am Nat) A model for the origin of biomass scaling laws in ecology (Paper without supervisors)

Articles in peer-reviewed journals:

  • Sandaa R-A, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J (2021) Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biological Reviews doi:10.1111/brv.12795 
  • Knowles B, Bonachela JA, Behrenfeld M, Bondoc K, Cael BB, Carlson CA, Cieslik N, Diaz B, Fuchs HL, Graff J, Grasis J, Halsey K, Haramaty L, Johns CT, Natale F, Nissimov JI, Schieler B, Thamatrakoln K, Thingstad TF, Våge S, Cliff Watkins C, Westberry TK & Bidle KD (2020) Temperate infection in a virus-host system previously known for virulent dynamics. Nature Communications. doi:10.1038/s41467-020-18078-4
  • Thingstad TF, Våge S, Bratbak G, Egge J, Larsen A, Nejstgaard JC, Sandaa R-A (2020). Reproducing the virus-to-copepod link in Arctic mesocosms using host fitness optimization. Limnol. & Oceanogr. doi:10.1002/lno.11549
  • Thingstad, TF, Våge S (2019) Host-virus-predator coexistence in a grey-box model with dynamicoptimization of host fitness. ISME J doi:10.1038/s41396-019-0496-7 
  • Våge S, Bratbak G, Egge J, Heldal M, Larsen A, Norland S, Lund Paulsen M, Pree B, Sandaa R-A, Foss Skjoldal E, Tsagaraki T, Øvreås L, Thingstad TF (2018) Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecol Lett doi:10.1111/ele.13122
  • Leles SG, Mitra A, Flynn KJ, Stoecker DK, Hansen PJ, Calbet A, McManus GB, Sanders RW, Caron DA, Not F, Hallegraeff GM, Pitta P, Raven JA, Johnson MD, Glibert PM, Våge S (2017) Oceanic protists with different forms of acquired phototrophy display contrastingbiogeographies and abundance. Proc R Soc B doi:10.1098/rspb.2017.0664
  • Sandaa R-A, Pree B, Larsen A, Våge S, Töpper B, Töpper JP, Thyrhaug R, Thingstad TF (2017) The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure. Viruses 9:238 doi:10.3390/v9090238
  • Våge, S, Pree, B. and Thingstad, T. F. (2016) Linking internal and external bacterial community control gives mechanistic framework for virus-to-bacteria ratios. Environ. Microbiol. doi:10.1111/1462-2920.13391
  • Record, N., Talmy, D., Våge, S. (2016). Quantifying tradeoffs for marine viruses. Front. Mar. Sci. 3:251 doi:10.3389/fmars.2016.00251
  • Pree, B., Larsen, A., Egge, J.K. , Simonelli, P., Madhusoodhanan, R., Tsagaraki, T., Våge, S., Erga, S.R., Bratbak, G., Thingstad, T.F. (2016) Dampened copepod-mediated trophic cascades in a microzooplankton-dominated microbial food web: a mesocosm study. Limnol Oceanogr doi:10.1002/lno.10483
  • Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F, Hansen PJ, Hallegraeff G, Sanders R, Wilken S, McManus G, Johnson M, Pitta P, Våge S, Berge T, Calbet A, Thingstad F, Jin Jeong H,  Burkholder JA, Glibert PM, Graneli E, Lundgren V (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; Incorporation of diverse mixotrophic strategies. Protist doi:10.1016/j.protis.2016.01.003
  • Våge, S. & Thingstad, T. F. (2015) Fractal hypothesis of the pelagic microbial ecosystem - Can simple ecological principles lead to self-similar complexity in the pelagic microbial food web? Frontiers Microbiol. 6:1357, doi:10.3389/fmicb.2015.01357
  • Thingstad, T.F., Pree, B., Giske, J. & Våge, S. (2015) What difference does it make if viruses are strain-, rather than species-specific? Frontiers in Microbiology doi:10.3389/fmicb.2015.00320
  • Våge, S., Storesund E., J., Giske, J. & Thingstad, T. F. (2014) Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense, PLoS ONE 9:e0101415 doi:10.1371/journal.pone.0101415
  • Thingstad, T. F., Våge, S., Storesund E., J., Sandaa, R.-A. & Giske, J. (2014) A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS 111:7813-7818 doi:10.1073/pnas.1400909111
  • Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven J. A., Granli, E., Glibert, P. M., Hansen, P. J., Stoecker, D. K., Thingstad, F., Tillmann, U., Våge, S., Wilken, S., & Zubkov, M. V. (2014) The role of mixotrophic protists in the biological carbon pump Biogeosciences 11:995-1005, doi:10.5194/bg-11-995-2014
  • Våge, S., Castellani, M., Thingstad, T. F. & Giske, J. (2013) Successful strategies in size structured mixotrophic food webs. Aquat. Ecol. 47(3)329-347, doi:10.1007/s10452-013-9447-y
  • Våge, S., Storesund E., J. & Thingstad, T. F. (2013) SAR11 viruses and defensive host strains. Nature 499:E3-E4, doi:10.1038/nature12387
  • Castellani, M., Våge, S., Strand, E., Thingstad, T. F. & Giske, J. (2013) The Scaled Subspaces Method: A new trait-based approach to model communities of populations with largely inhomogeneous density. Ecol. Model. 251:173-186, doi:10.1016/j.ecolmodel.2012.12.006.
  • Våge, S., Storesund E., J. & Thingstad, T. F. (2013) Adding a cost of resistance description extends the ability of virushost model to explain observed patterns in structure and function of pelagic microbial communities. Environ. Microbiol. 15(6):1842-1852, doi:10.1111/1462-2920.12077.
  • Våge, S., Basedow, S. L., Tande, K. S., & Zhou, M. (2011) Physical structure of the Barents Sea Polar Front near the Great Bank in August 2007. J. Mar. Syst. 130:256-262  doi:10.1016/j.jmarsys.2011.11.019


PhD thesis:

  • Våge, S. (2014) Pelagic microbial food web organization. Extending the theory for structure and diversity generating mechanisms based on life strategy trade-offs. University of Bergen, Norway. (https://bora.uib.no/handle/1956/7894)

M.Sc. thesis:

  • Våge, S. (2010) Structure and dynamics of the Barents Sea Polar Front near the Great Bank and associated plankton distribution in August 2007. University of Tromsø, Norway. (http://munin.uit.no/handle/10037/2456)




Research groups