Home
Student Pages
Postgraduate course

Research Topics in AI Ethics

  • ECTS credits15
  • Teaching semesterSpring, Autumn
  • Course codeINFO383
  • Number of semesters1
  • LanguageEnglish
  • Resources

Main content

ECTS Credits

15 ECTS

Level of Study

Master level

Teaching semester

Spring/Autumn

Objectives and Content

AI ethics is the common reference to a collection of sub-fields in AI developed to respond to the issues of how to manage the moral, personal and societal impact of replacing people tasks and roles with AI powered computing. AI Ethics comprises of four main research sub-disciplines: fair-accountable-transparent AI (FAccT), explainable AI (XAI),responsible AI, and machine ethics (also called artificial morality).

This course gives an introduction to AI Ethics and a general overview of the state of the art in AI ethics through immersing the students in the research process of an AI ethics topic.

Learning Outcomes

Knowledge.

  • Identify the basic problems studied in explainable AI (XAI), Fairness, Accountability and Transparency (FAccT), Responsible AI and machine ethics.
  • Understand the premises of the core moral theories.
  • Interpret, explain and extend the need for, and challenges of, AI Ethics.
  • Experience the entire process of research in machine ethics from the inception of an idea, analysis of research work, refining a research question, planing and executing group work and reporting on the work in the form of a scientific report.

Skills.

  • Appraise the ethical aspects of AI problems.
  • Match a specific AI Ethics challenge to its most relevant discipline.

General competence.

  • Reading and explaining scientific articles.
  • Research project management. Scientific reporting

Required Previous Knowledge

INFO283, INFO284 or INF264

Recommended Previous Knowledge

INFO282, INFO180 (or INFO283)

Solid background in discrete mathematics and logic.

Credit Reduction due to Course Overlap

None

Access to the Course

Master in Information Science. Other master students may apply for admission.

Teaching and learning methods

Seminars.

Compulsory Assignments and Attendance

Mandatory participation: Attendance at 80 % of course sessions is mandatory.

Obligatory group and individual assignments throughout the course.

Compulsory requirements are only valid the semester they are approved.

Forms of Assessment

- Participation in class discussions 20%

- Oral individual presentation 30%

- Group Project 50%

Grading Scale

The grading system has a descending scale from A to E for passes and F for fail.

Assessment Semester

Assessment in teaching semester

Reading List

The reading list will be ready before 1 June for the autumn semester and 1 Decemeber for the spring semester.

Course Evaluation

All courses are evaluated according to UiB's system for quality assurance of education.

Programme Committee

The Programme Committee is responsible for the content, structure and quality of the study programme and courses.

Course Coordinator

Course coordinator and administrative contact person can be found on Mitt UiB.

Course Administrator

Department of Information Science and Media Studies at the Faculty of Social Sciences has the administrative responsibility for the course and the study programme.