Evolutionary ecology

Ahlbeck Bergendahl, I., A.G.V. Salvanes, and V.A. Braithwaite 2015. Determining the effects of duration and recency of exposure to environmental enrichment. Applied Animal Behaviour Science. doi: 10.1016/j.applanim.2015.11.002.

Castellani, M., M. Heino, J. Gilbey, H. Araki, T. Svåsand, and K. A. Glover. 2015. IBSEM: An individual-based Atlantic salmon population model. PLoS ONE 10:e0138444. doi: 10.1371/journal.pone.0138444Open access! Coverage on forskning.no "Kan forutsi hvordan villaksen forandrer seg"

Diaz Pauli, B., M. Wiech, M. Heino, and A. C. Utne-Palm 2015. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery. Journal of Fish Biology 86:1030–1045. doi: 10.1111/jfb.12620.

Heino, M., B. Diaz Pauli, and U. Dieckmann. 2015. Fisheries-induced evolution. Annual Review of Ecology, Evolution, and Systematics 46:461–480. doi: 10.1146/annurev-ecolsys-112414-054339. Free access link

Heino, M., T. Svåsand, V. Wennevik, and K. A. Glover. 2015. Genetic introgression of farmed salmon in native populations: quantifying the relative influence of population size and frequency of escapees. Aquaculture Environment Interactions 6:185–190. doi: 10.3354/aei00126Open access!

Langård, L., G. Skaret, K. H. Jensen, A. Johannessen, A. Slotte, L. Nøttestad, and A. Fernö. 2015. Tracking individual herring within a semi-enclosed coastal marine ecosystem: 3-dimensional dynamics from pre- to post-spawning. Marine Ecology Progress Series 518:267–279. doi: 10.3354/meps11065.

Luyiga, S., S. Haande, R. P. Semyalo, Y. S. Kizito, A. Miyingo-Kezimbira, P. Brettum, A. L. Solheim, R. Odong, S. M. Asio, K. H. Jensen, and P. Larsson. 2015. How water exchange and seasonality affect the eutrophication of Murchison Bay, Lake Victoria. Limnologica 53:60–73. doi: 10.1016/j.limno.2015.06.001.

Morand, S., S. Nadler, and A. Skorping. 2015. Nematode life-traits diversity in the light of their phylogenetic diversification. Pages 289–303 in S. Morand, B. R. Krasnov, and D. T. J. Littlewood, eds. Parasite Diversity and Diversification. Cambridge University Press. doi: 10.1017/CBO9781139794749.019.

Paulsen, T. R., L. Colville, M. I. Daws, S. Eliassen, G. Högstedt, I. Kranner, K. Thompson, and V. Vandvik. 2015. The crypsis hypothesis explained: a reply to Jayasuriya et al. (2015). Seed Science Research 25:402–408. doi: 10.1017/S0960258515000288.

Salvanes, A. G. V., C. Bartholomae, D. Yemane, M. J. Gibbons, P. Kainge, J.-O. Krakstad, M. Rouault, A. Staby, and S. Sundby. 2015. Spatial dynamics of the bearded goby and its key fish predators off Namibia vary with climate and oxygen availability. Fisheries Oceanography 24:88–101. doi: 10.1111/fog.12068Open access!

Seivåg M. L., A. G. V. Salvanes, A. C Utne-Palm, O. S. Kjesbu. 2015. Reproductive tactics of male bearded goby (Sufflogobius bibarbatus) in anoxic and hypoxic waters. Journal of Sea Research, in press.

Skilbrei, O. T., M. Heino, and T. Svåsand. 2015. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages from farm sites in Norway. ICES Journal of Marine Science 72:670–685. doi: 10.1093/icesjms/fsu133. Nature News highlight "Farmed salmon swim to freedom"

Skorping, A., K. H. Jensen, A. Mennerat, G. Högstedt. 2015. When to reproduce? A new answer to an old question. American Naturalist, in press.

Utne-Palm, A. C., K. Eduard, K. H. Jensen, I. Mayer, and P. J. Jakobsen. 2015. Size dependent male reproductive tactic in the two-spotted goby (Gobiusculus flavescens). PLoS ONE 10:e0143487. doi: 10.1371/journal.pone.0143487Open access!

Vecchione, M., T. Falkenhaug, T. T. Sutton, A. Cook, A. Gislason, H. Ø. Hansen, M. Heino, P. Miller, U. Piatkowski, F. Porteiro, H. Søiland, and O. A. Bergstad. 2015. The effect of the North Atlantic Subpolar Front as a boundary in pelagic biogeography decreases with increasing depth and organism size. Progress in Oceanography 138:105–115. doi: 10.1016/j.pocean.2015.08.006.

Zimmermann, F., and C. Jørgensen. 2015. Bioeconomic consequences of fishing-induced evolution: a model predicts limited impact on net present value. Canadian Journal of Fisheries and Aquatic Sciences 72:612–624. doi: 10.1139/cjfas-2014-0006.