Student Pages
Postgraduate course

Finite Element Methods and Domain Decomposition

  • ECTS credits10
  • Teaching semesterAutumn
  • Course codeMAT360
  • Number of semesters1
  • LanguageEnglish
  • Resources

Main content

Teaching semester


Objectives and Content

The course considers the theory for finite element method to discrete partial differential equations, especially elliptical, and also solution techniques for the discrete equation system that become result. Domain decomposition as solving technique will become subject to special attention.

Learning Outcomes

After completing the course, students will be able to:

  • Formulate typical boundary value problems for elliptic equations in variational form that satisfies the conditions of the Lax-Milgram theorem.
  • Discretize boundary value problems using the Galerkin approximation with the classic finite element methods.
  • Develop simple programs in MATLAB to form systems of linear equations that approximates elliptic equations with finite element methods.
  • Apply the theory of Hilbert spaces and polynomial approximation to prove the convergence of the finite element method.
  • Use the multigrid method domain decomposition techniques for solving large systems of linear equations.

Required Previous Knowledge


Recommended Previous Knowledge

MAT260 Scientific Computing 2 and MAT232 Functional Analysis

Credit Reduction due to Course Overlap

INF360: 10 SP

Compulsory Assignments and Attendance


Forms of Assessment

Oral exam.

Grading Scale

The grading scale used is A to F. Grade A is the highest passing grade in the grading scale, grade F is a fail.

Exam information