Department of Physics and Technology

Research groups

Research at the Department of Physics and Technology has a very broad profile and is organised in 8 research groups:


Acoustics is a scientific field in which one studies vibrations and their propagation in the form of waves in all types of materials (gases, liquids and solids). Modern acoustics has many important societal and industrial applications, such as in the petroleum industry, medicine and material sciences.

The study of acoustics focuses on understanding the physical processes that take place in the interaction between sound waves and matter, and how these processes can be utilized in, for example, measuring instruments and methods.

Professor Per Lunde is the leader for this group and here is a link to the group.


Electronics and Measurement Technology

Electronics and measurement technology are an important part of our everyday lives. The limits for what can be measured and controlled electronically are being stretched everyday, and this research team actively participates in this. Our research activities are in two main directions:

In microelectronics, we are working on the development of new electronic circuits that can be used in new physics experiments, or we use advanced commercial microelectronics to solve measurement and control problems.

Contact persons for Microelectronics:

Measurement Technology / Instrumentation
In measurement technology, we utilize different chemical and physical properties of materials for the development of sensors and instruments for a variety of applications. Interdisciplinarity in instrumentation also requires extensive use of mathematics and informatics, for example for the development of electronic circuits, modeling, simulation and control of sensors and processes, as well as interpretation and processing of measurement data. Our students are offered interesting and relevant courses and thesis projects which range from the theoretical to the experimental.

Contact person for Measurement Technology

Professor Kjetil Ullaland leads the Electronics and Measurement Technology group. This is a link to the group's website.


Nanoscience includes the study of functional materials, systems or phenomena based on nanometer scale building blocks. The characteristics of interest are critically dependent on precisely this order of magnitude being maintained. This is usually due to quantum mechanical effects or that an extremely high proportion of atoms is on the surface of the nanoparticle. Nanoscience is dependent on the understanding and exploiting of the relationship between properties of nanoparticles and pores on the one hand, and desirable properties of the material and the overall system on the other.

Nanoscience research is highly interdisciplinary and takes place at the intersection of physics, chemistry and biology, and benefits in different ways from all three of these disciplines. Our research group mainly targets nanophysics, nanochemistry, nanobiology or nanobiomedicine, but will also come into contact with other relevant disciplines.

Typical problems in nanoscience:

Nanotechnological instrumentation and measurement techniques, nanostructured catalysts, natural nanoparticles and drops, nanomaterials, quantum control and dynamics, magnetic nanoparticles, protein structure and function, protein-surface interactions, protein dynamics, micro-contact printing, nanotoxicology.

Professor Bodil Holst is the leader for the Nanyphysics and Technology group.


Optics and Atomic Physics

The research group for optics and physics works in a broad spectrum of theoretical and experimental optical and atomic methods.

The field of study combines, among other topics, thes study of fundamental atomic and molecular level optical processes with remote measurement, environmental monitoring and photosynthesis applications. An other area of focus is the study of fundamental atomic and quantum optical phenomena. Modeling, measurements and numerical methods are important work tools.

The group’s activities range between studying the interaction between light and matter in macroscopic systems to quantum mechanical processes at nanoscale and atomic levels, or between single photon studies to radiation transport. The group has both experimental and theoretical projects and collaborates with a large number of researchers, research groups and organizations, both locally and internationally.

Professor Ladislav Kochbach is the leader for the Optics and Atomic Physics group.

This is a link to the group’s website


Petroleum and Process Technology

Our group runs research and education within a broad field of expertise related to international petroleum activities, with particular focus on increased oil recovery from the Norwegian continental shelf.

Our main activities are:

1. Injection of CO2 and hydrocarbon gas for increased recovery
2. Mobility control in heterogeneous reservoirs using foam and polymers
3. Upscaling: From the laboratory to the field
4. Gas production from methane hydrate
5. Thermodynamic modeling of chemical processes
6. CO2 storage

Professor Arne Graue is the leader of the Petroleum and Process Technology group. This is link a to the group’s website.


Space Science / Birkeland Centre for Space Science (BCSS)

The Center’s goal is to increase knowledge about electric currents around the Earth, particle precipitation from space, northern lights, gamma-ray bursts and other connections between the Earth and space.

The Birkeland Centre for Space Science is a Center for Outstanding Research (SFF) at the University of Bergen, with researchers affiliated with NTNU and UNIS

Professor Nikolai Østgaard is the leader for the Centre, og here is the group’s website.

Subatomic Physics

The group's activity is organized in four main areas:
• Experimental nuclear physics
• Experimental particle physics
• Experimental astroparticle physics
• Theoretical particle physics 

Experimental nuclear physics is an international activity. We are currently participating in experiments at CERN in Geneva, and at Brookhaven National Laboratory, Long Island, New York.

Much of our activity is linked to the accelerator Large Hadron Collider (LHC) where we participate in two ATLAS (particle physics) and ALICE (nuclear physics) experiments. Our group has been constructing the detectors for these two experiments, and we are now active in both operation of the detectors, data analysis and development of new detector technology with a view to upgrading the experiments. The research on the theoretical side focuses on the model building which is necessary for interpreting the experimental results from LHC.

Our focus on astroparticle physics is indirect detection of dark matter using cosmic gamma rays. We are part of the planning / building up the Cherenkov Telescope Array Observatory, and analyzing available data from existing observatories.

Professor Dieter Rörich is the group leader, and this is a link to the group's website.

Theory, Energy and Process Technology

Theory, Energy and Process Technology is an interdisciplinary research group concentrating on High Energy Subatomic Theory, Multi-Phase Systems, Process and Safety and Energy Physics.

Associate Professor Bjørn J. Arntzen leads the research group. This is a link to the group’s website.