Home
Physical Oceanography

Possible Master's Projects

GFI ocean group hike June 2021
Some of us in the Physical Oceanography group overlooking the local fjord from one of the seven mountains surrounding Bergen on an after-lunch hike in June 2021.
Photo:
UiB

Main content

You can find a short presentation of the supervisors here.


Surface hydrographic conditions north of Iceland: implications for wintertime dense-water formation

Thermosalinograph (underway temperature and salinity) observations will be used to map and quantify the surface hydrographic properties north of Iceland and their seasonal and interannual variability. The extent and salinity of the surface layer in summer affect the dense-water formation on the shelf and in the Iceland Sea in winter. This project will help clarify the pathways and interactions of the North Icelandic Irminger Current and the East Icelandic Current as well as the links between the amount of freshwater on the shelf in summer, the wintertime mixed-layer densities, and the atmospheric conditions driving their variability.

Contact: Stefanie Semper and Kjetil Våge
 

Exchange of freshwater between the east Greenland shelf and the interior ocean basins

A high-resolution numerical simulation will be used to quantify the net freshwater flux from the east Greenland shelf into the interior basins of the western Nordic Seas. Freshwater in the interior basins inhibits dense-water formation through open-ocean convection. The exact locations and dynamical processes of the freshwater exchange will be identified (i.e., where the freshwater leaves the shelf and whether the freshwater export mainly follows advective pathways or occurs through instabilities in the East Greenland Current). Potentially, satellite data will complement the analysis to characterise the interannual variability of the freshwater movement.

Contact: Stefanie Semper and Kjetil Våge
 

Transformation of Atlantic Water in the East Greenland Current

In this project, a numerical model will be used to assess the transformation of Atlantic Water in the East Greenland Current, with particular focus on the potential for dense-water formation. The role of air-sea interaction, in particular modifications of both the atmosphere and ocean boundary layers, will be investigated in collaboration with meteorologists at GFI.

Contact: Stefanie Semper and Kjetil Våge
 

Water-mass transformation in the Atlantic Water Boundary Current system

In this project, historical hydrographic observations will be used to quantify the along-stream modification of the Atlantic Water in the boundary current system that encircles the Nordic Seas and the Arctic Ocean.

Contact: Stefanie Semper and Kjetil Våge
 

High-frequency variability in the northwestern Iceland Sea

The northwestern Iceland Sea has not been studied much previously due to the lack of wintertime measurements. Only with the recent retreat of sea ice toward Greenland, this area has become more accessible. A mooring that was deployed in the northwestern Iceland Sea returned two-year long time series of temperature with a temporal resolution of up to 30 s. This unique data set will be used to investigate small-scale processes and high-frequency variability in the upper water column.

Contact: Stefanie Semper, Ilker Fer, and Kjetil Våge

 

Measuring ocean currents with an autonomous vessel

Near surface ocean current data are important for ocean trajectory predictions (e.g. for salmon lice, marine plastic and oil pollution). MET Norway is involved in a project led by Aanderaa Xylem where the Offshore Sensing SailBuoy (www.sailbuoy.no) has been equipped with an Acoustic Doppler Current Profiler (ADCP) for ocean current profiles near the surface. The project is sponsored by the Norwegian Research Council. The SailBuoy is world leading technology developed in Bergen and it was the first autonomous vessel to cross the Atlantic. This pioneering project will provide data that can be used for ocean model validation, for data assimilation and for comparison with other measurements such as permanent rigs and HF radars. The SailBuoy will carry out cruises along the coast of mainland Norway and hopefully on Svalbard. Publication of results in an international journal is highly likely.

Contact: Lars R. Hole (lrh@met.no)

 

Storm surges in Sognefjorden

The Norwegian "kartverket" (https://www.kartverket.no) has a unique record of the water level on a number of positions along Sognefjorden. The records started in 2018, and data collection is ongoing. The records thus cover the large storm surges that we experienced during the winter of 2019-2020 and they can be used to gain insight into how the water level in the fjord varies due to atmospheric, tidal and freshwater forcing. The Institute for Marine Research (HI, www.hi.no) have concurrent current records from oceanographic moorings and results from numerical modelling of the region that will be available for the study. The student will be supervised by colleagues from both Kartverket and HI, two institutions that employ oceanographers.

Contacts at GFI: Elin Darelius and Knut Barthel

 

Overturning in the Nordic Seas

We offer several topics for MSc projects in physical oceanography through the "Overturning in the Nordic Seas" group (OVENS). The overall objectives of the group are to better understand the ocean-atmosphere interaction that leads to dense-water formation in the Nordic Seas and its importance to the global overturning circulation. Suggested topics are

  • water mass transformation in the Greenland and Iceland Seas
  • circulation and inter-basin exchange in the Nordic Seas
  • air-sea-ice interaction in the marginal ice zone east of Greenland

The approach will be to use a combination of shipborne and autonomous measurements as well as simple idealized models.

Contact: Kjetil Våge 

 

Antarctic Polar oceanography

Shelf break exchange in the Weddell Sea 

Why do warm water enter the continental shelf during summer but not in winter? The cross shelf break flow will be studied using results from laboratory experiments and/or numerical modelling supported by observations

Hydrography near an ice shelf front

How does the hydrography near an ice shelf front change throughout the year / from year to year? The hydrography will be studied using moored instrumentation and CTD profiles

Contact: Elin Darelius 

 

Ocean Mixing Processes

We conduct observation-based research on ocean mixing processes. Typically data sets are already collected and available for analysis. But we also try to integrate the student in a research cruise for collecting own data for the Master's study. 

  • investigate the hydrography and mixing in Førdefjorden (using the high-quality data collected during the fjord oceanography class)
  • internal wave field properties inferred from moored observations near Yermak Plateau, Arctic Ocean
  • eddies in the Lofoten Basin (using data collected under the PROVOLO project)
  • frontal processes across the Mohn Ridge inferred from shipboard and Seaglider observations (using data collected under the PROVOLO project)

Contact: Ilker Fer 

 

Arctic Polar Oceanography and sea ice

We offer topics on the longer term changes and variability of sea ice and oceanography in the Arctic Ocean, using a mix of climate models, process models,and observations. The existing climate model simulations, through cooperation with the Climate group using the Norwegian Earth System Model (NorESM), can be used for evaluation and analysis.

  • Barents Sea Ice Cover variability the last 450 years
  • Rapid Ice Loss events in NorESM simulations

Contact: Lars Henrik Smedsrud 

 

Circulation in the Red Sea

Sanganeb is an atoll in the Red Sea about ten nautical miles from land, not far from Port Sudan. Seasonal measurements of temperature and salinity taken with a CTD along the route between Port Sudan and Sanganeb will be related with circulation estimates given by a numerical model. This project involves evaluation of both observational and model data, and is about a very interesting and special part of the world ocean.

Contact: Knut Barthel 

 

A wave energy climatology for Norwegian waters.

The wave energy flux is the relevant quantity for estimating the potential for wave energy production. Using the 10-km resolution hindcast archive NORA10 which spans the period 1957 to present, the student will investigate the wave energy potential in Norwegian waters. The NORA10  archive was developed and is maintained by the Norwegian Meteorological Institute and is the authoritative reference data set for historical wind and wave climate in the Norwegian Sea, the North Sea and the BarentsSea.  

Supervisor: Øyvind Breivik (oyvind.breivik@met.no)

 

Wave effects in the upper ocean.

The ocean surface boundary layer is influenced by the presence of surface waves. The waves affect the ocean through wave breaking, modification of the momentum flux from the atmosphere (wind stress) and through the Stokes drift, a second-order wave effect that causes material transport. The NEMO model has recently been set up on a regional scale and can be used to quantify the impact of the wave field on a high-resolution ocean model. Relevant questions are how the upwelling and the mixing is affected by waves in the North Sea. Good coding skills are required.

Supervisors: Øyvind Breivik (oyvind.breivik@met.no) and Lichuan Wu   (SMHI)

 

Bølgeenergipotensiale fra Runde bølgekraftverk  

Analyse av to år med simuleringer fra bølgemodellen SWAN som er kjørt for Runde ved Runde Miljøsenter og Meteorologisk institutt. Oppgradere modellen med finere oppløsning. Waves4Power http://www.waves4power.com/projects/ er igang med å installere deres prototype WaveEL ved Runde. Analysen av bølgedata kan ha som formål å beregne bølgeenergien for denne lokalitet, og bølgeklimaet i området. Artikkel vedlagt. Det er mulighet for å sitte på Runde i en periode.   

Veileder: Birgitte Furevik

 

Vindklima i norske fjorder beregnet med syntetisk aperturradar (SAR):

SAR-bilder leverer observasjoner av havoverflaten som kan omdannes til detaljerte vindfelter. Vindobservasjoner er mangelvare i kystområder og oppgaven går på å analysere vinden i norske fjorder med SAR, in situ-observasjoner og den operasjonelle værvarslingsmodellen AROME.

Veileder: Birgitte Furevik (birgitte.furevik@met.no)

 

Geophysical modelling of real oil spills in the Gulf of Mexico. 

A generic ocean trajectory framework (OpenDrift) has recently been  developed at the Norwegian Meteorological Institute. Through partners in Florida we have obtained satellite observations (shape files) describing the development of a real spill from the Taylor pipeline in the Gulf of Mexico over several days. Ocean surface drifter data from the region are also available. A master student is sought to run experiments with the Open Oil module using various parameterizations and to compare with observations for analysis. Forcing will be provided from a high resolution ocean model and atmospheric and wave models from the European Center for Medium Range Weather Forecasting (ECMWF). The project will involve collaboration with the University in Miami and other US partners, and travels to Florida can be expected. The student should be confident in Python programming.  

Supervisor: Lars Robert Hole (lrh@met.no)

 

Storm surge modeling in Vietnam using ROMS and analytical models.

The Norwegian Meteorological Institute (MET Norway) collaborates with the National Hydro-Meteorological Service of Vietnam (NHMS) on a capacity building project sponsored by the Norwegian government. The main purpose of the project is geohazard disaster prevention. NHMS plan to upgrade their ocean model system to the Regional Ocean Models System (ROMS) (http://myroms.org). MET Norway uses ROMS in a nested configuration from 20km (entire Arctic Ocean) to 4km to 800m(the Norwegian coast). This model system also acts as input for the oil drift and search and rescue models. In this master project we propose to use a simple 2D setup of ROMS and compare with tidal observation in Vietnam. Vietnam currently has 17 operational tidal stations with hourly or 6 hourly observations. The data can also be compared with analytical formulas. The work will involve numerical simulations and statistical analysis. The student will collaborate with scientists at MET Norway and NHMS and can also expect to travel to Vietnam.   

Supervisor: Lars R. Hole (lrh@met.no) at MET Norway, Bergen.